The Range of Photon Energies Transmission Between Atomic Picometer Bonds and their Energies Mathematics in Average Earth Gravity over Time:

Photon: A particle representing a quantum of light or other electromagnetic radiation. A photon carries energy proportional to the radiation frequency but has zero rest mass.

Quantum: A particle representing a quantum of light or other electromagnetic radiation. A photon carries energy proportional to the radiation frequency but has zero rest mass.

‘This excess energy is emitted in quanta of electromagnetic radiation (photons of light) that have exactly same energy as the difference in energy between the orbits jumped by the electron.’

Let’s play a game: One where the distances energies over time between any number of atomic bonds of any kind’s electrons have been mapped.

Actually let me do that for you.

If this makes sense…

The things we need to know:
The atom type one. The atom type 2. Their bond lengths (the distance an electron would need to jump over the to the new outer shell tells us everything we need to know about photon travels per atom type pairings). The energy in Kj/Mol to break that bond. You’ll see why once this document is done. This is likely going to be quite dry so get yourself something to drink.

We’re assuming we can remove an electron from any atom type here. Just one to start. There are deep delving shell subsystems to be implemented when asked but it’s not as complicated as you’d think. (Hertz of the outer ring/ the size of the number of electrons in the shell as multiplied by it’s/their gravitational environment) should give you the speed of the outer shell, plus done again once those are found to show the differences in the wobble between the shells that occur naturally as the electrons pass by each other and interact upon each other. The wave function of the electrons as they pass around the nucleus. Basic stuff.

We know that an electron in “motion” (as far as I’ve been told) is 2,200 km/sec and weigh within an 1836th ratio of a proton. Electron Weight: 9.109×10−31 kg. Proton Weight: 1.67262 × 10−27 kg.

Again quite dry. I’m about to try to list out all the paired combinations of atoms, their valence bonds, the distance of the two central points of the two atoms plus their bond distance up until I can no longer. The question we have to ask is where does the photon form? Along the rim of one of the atoms, depending on it’s nature, or at the meeting point depending on their differences?

I realized that I could make this easier on myself by computing the averages from 100 to 200 picometers, than computing all of the single, double, and triple, bonds per dual atoms relationship.
So let’s try that.

[100 picometers/(2200 kilometers x *(1-8 [9.109×10−31 kg] electrons in valence shell))]*[Gravity’s action on the average masses {9.80665 m/s2(within 7 parts per billion as governed by this Earth bound experiment: https://news.stanford.edu/pr/99/atomgravity990825.html.)}]

100. Figuring out how to get it done for each electron valence number.

The energies of the bonds of a 100 picometer bond from 1-8 valence electrons. There is an error here. It should read / by Average Gravity of Earth not Multiplied.

_________Sample [1 electron at 102 pm/2200km/sec] ________

102: ((4.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 (m / (s^2))) =
______________________________________________________________

101:
1:

((4.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.13933959 × 1012 m-1 kg-1 s3


2:

((4.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.56966979 × 1012 m-1 kg-1 s3


3:

((4.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7131132 × 1012 m-1 kg-1 s3


4:

((4.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2848349 × 1012 m-1 kg-1 s3


5:

((4.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02786792 × 1012 m-1 kg-1 s3


6:

((4.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.56556598 × 1011 m-1 kg-1 s3


7:

((4.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.3419137 × 1011 m-1 kg-1 s3


8:

((4.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.42417449 × 1011 m-1 kg-1 s3


102:

1:

((4.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.19022414 × 1012 m-1 kg-1 s3


2:

((4.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.59511207 × 1012 m-1 kg-1 s3


3:

((4.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.73007471 × 1012 m-1 kg-1 s3


4:

((4.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29755604 × 1012 m-1 kg-1 s3


5:

((4.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03804483 × 1012 m-1 kg-1 s3


6:

((4.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1011 m-1 kg-1 s3


7:

((4.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.41460592 × 1011 m-1 kg-1 s3


8:

((4.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.48778018 × 1011 m-1 kg-1 s3


103:

1:

((4.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.24110869 × 1012 m-1 kg-1 s3


2:

((4.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.62055434 × 1012 m-1 kg-1 s3


3:

((4.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74703623 × 1012 m-1 kg-1 s3


4:

((4.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31027717 × 1012 m-1 kg-1 s3


5:

((4.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04822174 × 1012 m-1 kg-1 s3


6:

((4.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.73518115 × 1011 m-1 kg-1 s3


7:

((4.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48729813 × 1011 m-1 kg-1 s3


8:

((4.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.55138586 × 1011 m-1 kg-1 s3


104

1

((4.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.29199324 × 1012 m-1 kg-1 s3


2

((4.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.64599662 × 1012 m-1 kg-1 s3


3

((4.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76399775 × 1012 m-1 kg-1 s3


4

((4.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


5

((4.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05839865 × 1012 m-1 kg-1 s3


6

((4.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.81998874 × 1011 m-1 kg-1 s3


7

((4.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.55999035 × 1011 m-1 kg-1 s3


8

((4.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.61499155 × 1011 m-1 kg-1 s3


105

1

((4.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.34287779 × 1012 m-1 kg-1 s3


2

((4.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.67143889 × 1012 m-1 kg-1 s3


3

((4.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


4

((4.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33571945 × 1012 m-1 kg-1 s3


5

((4.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


6

((4.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1011 m-1 kg-1 s3


7

((4.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268255 × 1011 m-1 kg-1 s3


8

((4.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.67859724 × 1011 m-1 kg-1 s3


106

1

((4.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.39376234 × 1012 m-1 kg-1 s3


2

((4.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.69688117 × 1012 m-1 kg-1 s3


3

((4.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.79792078 × 1012 m-1 kg-1 s3


4

((4.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34844059 × 1012 m-1 kg-1 s3


5

((4.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07875247 × 1012 m-1 kg-1 s3


6

((4.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.98960391 × 1011 m-1 kg-1 s3


7

((4.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.70537478 × 1011 m-1 kg-1 s3


8

((4.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.74220293 × 1011 m-1 kg-1 s3


107

1

((4.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.44464689 × 1012 m-1 kg-1 s3


2

((4.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.72232344 × 1012 m-1 kg-1 s3


3

((4.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8148823 × 1012 m-1 kg-1 s3


4

((4.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36116172 × 1012 m-1 kg-1 s3


5

((4.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08892938 × 1012 m-1 kg-1 s3


6

((4.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.07441148 × 1011 m-1 kg-1 s3


7

((4.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.77806698 × 1011 m-1 kg-1 s3


8

((4.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.80580861 × 1011 m-1 kg-1 s3


108

1

((4.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.49553144 × 1012 m-1 kg-1 s3


2

((4.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.74776572 × 1012 m-1 kg-1 s3


3

((4.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184381 × 1012 m-1 kg-1 s3


4

((4.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


5

((4.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09910629 × 1012 m-1 kg-1 s3


6

((4.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921907 × 1011 m-1 kg-1 s3


7

((4.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.85075921 × 1011 m-1 kg-1 s3


8

((4.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.8694143 × 1011 m-1 kg-1 s3


109

1

((4.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.54641599 × 1012 m-1 kg-1 s3


2

((4.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.77320799 × 1012 m-1 kg-1 s3


3

((4.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84880533 × 1012 m-1 kg-1 s3


4

((4.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.386604 × 1012 m-1 kg-1 s3


5

((4.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1092832 × 1012 m-1 kg-1 s3


6

((4.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1092832 × 1012 m-1 kg-1 s3


7

((4.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.92345141 × 1011 m-1 kg-1 s3


8

((4.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.93301998 × 1011 m-1 kg-1 s3


110

1

((5.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.59730054 × 1012 m-1 kg-1 s3


2

((5.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.79865027 × 1012 m-1 kg-1 s3


3

((5.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.86576685 × 1012 m-1 kg-1 s3


4

((5.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39932514 × 1012 m-1 kg-1 s3


5

((5.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


6

((5.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.32883424 × 1011 m-1 kg-1 s3


7

((5.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.99614363 × 1011 m-1 kg-1 s3


8

((5.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.99662568 × 1011 m-1 kg-1 s3


111

1

((5.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.6481851 × 1012 m-1 kg-1 s3


2

((5.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.82409255 × 1012 m-1 kg-1 s3


3

((5.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272837 × 1012 m-1 kg-1 s3


4

((5.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41204627 × 1012 m-1 kg-1 s3


5

((5.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12963702 × 1012 m-1 kg-1 s3


6

((5.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364183 × 1011 m-1 kg-1 s3


7

((5.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.06883586 × 1011 m-1 kg-1 s3


8

((5.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.06023137 × 1011 m-1 kg-1 s3


112

1

((5.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.69906964 × 1012 m-1 kg-1 s3


2

((5.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.84953482 × 1012 m-1 kg-1 s3


3

((5.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.89968988 × 1012 m-1 kg-1 s3


4

((5.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


5

((5.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13981393 × 1012 m-1 kg-1 s3


6

((5.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.49844941 × 1011 m-1 kg-1 s3


7

((5.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152806 × 1011 m-1 kg-1 s3


8

((5.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.12383705 × 1011 m-1 kg-1 s3


113

1

((5.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.7499542 × 1012 m-1 kg-1 s3


2

((5.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.8749771 × 1012 m-1 kg-1 s3


3

((5.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9166514 × 1012 m-1 kg-1 s3


4

((5.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43748855 × 1012 m-1 kg-1 s3


5

((5.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14999084 × 1012 m-1 kg-1 s3


6

((5.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.583257 × 1011 m-1 kg-1 s3


7

((5.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.21422028 × 1011 m-1 kg-1 s3


8

((5.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.18744275 × 1011 m-1 kg-1 s3


114

1

((5.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.80083874 × 1012 m-1 kg-1 s3


2

((5.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.90041937 × 1012 m-1 kg-1 s3


3

((5.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361291 × 1012 m-1 kg-1 s3


4

((5.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45020969 × 1012 m-1 kg-1 s3


5

((5.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16016775 × 1012 m-1 kg-1 s3


6

((5.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806457 × 1011 m-1 kg-1 s3


7

((5.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.28691249 × 1011 m-1 kg-1 s3


8

((5.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.25104843 × 1011 m-1 kg-1 s3


115

1

((5.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.8517233 × 1012 m-1 kg-1 s3


2

((5.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.92586165 × 1012 m-1 kg-1 s3


3

((5.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95057443 × 1012 m-1 kg-1 s3


4

((5.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.46293082 × 1012 m-1 kg-1 s3


5

((5.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


6

((5.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.75287216 × 1011 m-1 kg-1 s3


7

((5.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.35960471 × 1011 m-1 kg-1 s3


8

((5.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.31465412 × 1011 m-1 kg-1 s3


116

1

((5.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.90260784 × 1012 m-1 kg-1 s3


2

((5.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.95130392 × 1012 m-1 kg-1 s3


3

((5.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.96753595 × 1012 m-1 kg-1 s3


4

((5.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


5

((5.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18052157 × 1012 m-1 kg-1 s3


6

((5.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.83767974 × 1011 m-1 kg-1 s3


7

((5.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.43229692 × 1011 m-1 kg-1 s3


8

((5.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.3782598 × 1011 m-1 kg-1 s3


117

1

((5.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.9534924 × 1012 m-1 kg-1 s3


2

((5.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.9767462 × 1012 m-1 kg-1 s3


3

((5.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449747 × 1012 m-1 kg-1 s3


4

((5.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4883731 × 1012 m-1 kg-1 s3


5

((5.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19069848 × 1012 m-1 kg-1 s3


6

((5.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248733 × 1011 m-1 kg-1 s3


7

((5.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.50498914 × 1011 m-1 kg-1 s3


8

((5.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.4418655 × 1011 m-1 kg-1 s3


118

1

((5.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.00437694 × 1012 m-1 kg-1 s3


2

((5.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.00218847 × 1012 m-1 kg-1 s3


3

((5.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00145898 × 1012 m-1 kg-1 s3


4

((5.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50109424 × 1012 m-1 kg-1 s3


5

((5.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20087539 × 1012 m-1 kg-1 s3


6

((5.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00072949 × 1012 m-1 kg-1 s3


7

((5.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.57768135 × 1011 m-1 kg-1 s3


8

((5.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.50547118 × 1011 m-1 kg-1 s3


119

1

((5.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.0552615 × 1012 m-1 kg-1 s3


2

((5.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.02763075 × 1012 m-1 kg-1 s3


3

((5.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0184205 × 1012 m-1 kg-1 s3


4

((5.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.51381537 × 1012 m-1 kg-1 s3


5

((5.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2110523 × 1012 m-1 kg-1 s3


6

((5.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00921025 × 1012 m-1 kg-1 s3


7

((5.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1011 m-1 kg-1 s3


8

((5.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.56907687 × 1011 m-1 kg-1 s3


120

1

((5.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.10614604 × 1012 m-1 kg-1 s3


2

((5.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.05307302 × 1012 m-1 kg-1 s3


3

((5.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538201 × 1012 m-1 kg-1 s3


4

((5.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


5

((5.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


6

((5.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


7

((5.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.72306577 × 1011 m-1 kg-1 s3


8

((5.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268255 × 1011 m-1 kg-1 s3


121

1

((5.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.1570306 × 1012 m-1 kg-1 s3


2

((5.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.0785153 × 1012 m-1 kg-1 s3


3

((5.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.05234353 × 1012 m-1 kg-1 s3


4

((5.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53925765 × 1012 m-1 kg-1 s3


5

((5.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23140612 × 1012 m-1 kg-1 s3


6

((5.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02617177 × 1012 m-1 kg-1 s3


7

((5.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.795758 × 1011 m-1 kg-1 s3


8

((5.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.69628825 × 1011 m-1 kg-1 s3


122

1

((5.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.20791515 × 1012 m-1 kg-1 s3


2

((5.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.10395758 × 1012 m-1 kg-1 s3


3

((5.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.06930505 × 1012 m-1 kg-1 s3


4

((5.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55197879 × 1012 m-1 kg-1 s3


5

((5.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24158303 × 1012 m-1 kg-1 s3


6

((5.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03465253 × 1012 m-1 kg-1 s3


7

((5.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.86845022 × 1011 m-1 kg-1 s3


8

((5.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.75989394 × 1011 m-1 kg-1 s3


123

1

((5.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.2587997 × 1012 m-1 kg-1 s3


2

((5.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.12939985 × 1012 m-1 kg-1 s3


3

((5.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.08626657 × 1012 m-1 kg-1 s3


4

((5.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56469992 × 1012 m-1 kg-1 s3


5

((5.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25175994 × 1012 m-1 kg-1 s3


6

((5.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04313328 × 1012 m-1 kg-1 s3


7

((5.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.94114242 × 1011 m-1 kg-1 s3


8

((5.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.82349962 × 1011 m-1 kg-1 s3


124

1

((5.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.30968425 × 1012 m-1 kg-1 s3


2

((5.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.15484213 × 1012 m-1 kg-1 s3


3

((5.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.10322808 × 1012 m-1 kg-1 s3


4

((5.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


5

((5.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26193685 × 1012 m-1 kg-1 s3


6

((5.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05161404 × 1012 m-1 kg-1 s3


7

((5.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.01383465 × 1011 m-1 kg-1 s3


8

((5.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.88710532 × 1011 m-1 kg-1 s3


125

1

((5.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.3605688 × 1012 m-1 kg-1 s3


2

((5.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.1802844 × 1012 m-1 kg-1 s3


3

((5.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.1201896 × 1012 m-1 kg-1 s3


4

((5.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5901422 × 1012 m-1 kg-1 s3


5

((5.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


6

((5.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0600948 × 1012 m-1 kg-1 s3


7

((5.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.08652685 × 1011 m-1 kg-1 s3


8

((5.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.950711 × 1011 m-1 kg-1 s3


126

1

((5.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.41145335 × 1012 m-1 kg-1 s3


2

((5.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.20572668 × 1012 m-1 kg-1 s3


3

((5.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.13715112 × 1012 m-1 kg-1 s3


4

((5.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60286334 × 1012 m-1 kg-1 s3


5

((5.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28229067 × 1012 m-1 kg-1 s3


6

((5.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


7

((5.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921908 × 1011 m-1 kg-1 s3


8

((5.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.01431669 × 1011 m-1 kg-1 s3


127

1

((5.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.4623379 × 1012 m-1 kg-1 s3


2

((5.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.23116895 × 1012 m-1 kg-1 s3


3

((5.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.15411263 × 1012 m-1 kg-1 s3


4

((5.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.61558447 × 1012 m-1 kg-1 s3


5

((5.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29246758 × 1012 m-1 kg-1 s3


6

((5.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07705632 × 1012 m-1 kg-1 s3


7

((5.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.23191128 × 1011 m-1 kg-1 s3


8

((5.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.07792237 × 1011 m-1 kg-1 s3


128

1

((5.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.51322245 × 1012 m-1 kg-1 s3


2

((5.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.25661123 × 1012 m-1 kg-1 s3


3

((5.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.17107415 × 1012 m-1 kg-1 s3


4

((5.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


5

((5.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30264449 × 1012 m-1 kg-1 s3


6

((5.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08553708 × 1012 m-1 kg-1 s3


7

((5.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.3046035 × 1011 m-1 kg-1 s3


8

5.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152807 × 1011 m-1 kg-1 s3


129

1

((5.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.564107 × 1012 m-1 kg-1 s3


2

((5.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.2820535 × 1012 m-1 kg-1 s3


3

((5.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.18803567 × 1012 m-1 kg-1 s3


4

((5.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64102675 × 1012 m-1 kg-1 s3


5

((5.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3128214 × 1012 m-1 kg-1 s3


6

((5.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09401783 × 1012 m-1 kg-1 s3


7

((5.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.37729571 × 1011 m-1 kg-1 s3


8

((5.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.20513375 × 1011 m-1 kg-1 s3


130

1

((5.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.61499155 × 1012 m-1 kg-1 s3


2

((5.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.30749578 × 1012 m-1 kg-1 s3


3

((5.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.20499718 × 1012 m-1 kg-1 s3


4

((5.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65374789 × 1012 m-1 kg-1 s3


5

((5.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


6

((5.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10249859 × 1012 m-1 kg-1 s3


7

((5.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.44998793 × 1011 m-1 kg-1 s3


8

((5.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.26873944 × 1011 m-1 kg-1 s3


131

1

((5.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.6658761 × 1012 m-1 kg-1 s3


2

((5.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.33293805 × 1012 m-1 kg-1 s3


3

((5.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.2219587 × 1012 m-1 kg-1 s3


4

((5.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66646902 × 1012 m-1 kg-1 s3


5

((5.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33317522 × 1012 m-1 kg-1 s3


6

((5.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11097935 × 1012 m-1 kg-1 s3


7

((5.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.52268014 × 1011 m-1 kg-1 s3


8

((5.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.33234512 × 1011 m-1 kg-1 s3


132

1

((6.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.71676065 × 1012 m-1 kg-1 s3


2

((6.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.35838033 × 1012 m-1 kg-1 s3


3

((6.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.23892022 × 1012 m-1 kg-1 s3


4

((6.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


5

((6.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34335213 × 1012 m-1 kg-1 s3


6

((6.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


7

((6.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.59537236 × 1011 m-1 kg-1 s3


8

((6.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.39595081 × 1011 m-1 kg-1 s3


133

1

((6.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.76764521 × 1012 m-1 kg-1 s3


2

((6.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.3838226 × 1012 m-1 kg-1 s3


3

((6.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2 255 881 735 813 m-1 kg-1 s3


4

((6.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6919113 × 1012 m-1 kg-1 s3


5

((6.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35352904 × 1012 m-1 kg-1 s3


6

((6.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12794087 × 1012 m-1 kg-1 s3


7

((6.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1011 m-1 kg-1 s3


8

((6.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.45955651 × 1011 m-1 kg-1 s3


134

1

((6.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.81852975 × 1012 m-1 kg-1 s3


2

((6.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.40926488 × 1012 m-1 kg-1 s3


3

((6.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.27284325 × 1012 m-1 kg-1 s3


4

((6.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.70463244 × 1012 m-1 kg-1 s3


5

((6.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36370595 × 1012 m-1 kg-1 s3


6

((6.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13642163 × 1012 m-1 kg-1 s3


7

((6.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.74075679 × 1011 m-1 kg-1 s3


8

((6.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.52316219 × 1011 m-1 kg-1 s3


135

1

((6.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.86941431 × 1012 m-1 kg-1 s3


2

((6.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.43470715 × 1012 m-1 kg-1 s3


3

((6.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.28980477 × 1012 m-1 kg-1 s3


4

((6.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.71735358 × 1012 m-1 kg-1 s3


5

((6.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


6

((6.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14490238 × 1012 m-1 kg-1 s3


7

((6.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.81344901 × 1011 m-1 kg-1 s3


8

((6.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.58676788 × 1011 m-1 kg-1 s3


136

1

((6.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.92029885 × 1012 m-1 kg-1 s3


2

((6.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3 460 149 425 748 m-1 kg-1 s3


3

((6.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2 306 766 283 832 m-1 kg-1 s3


4

((6.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1 730 074 712 874 m-1 kg-1 s3


5

((6.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38405977 × 1012 m-1 kg-1 s3


6

((6.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1 153 383 141 916 m-1 kg-1 s3


7

((6.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.88614122 × 1011 m-1 kg-1 s3


8

((6.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =865 037 356 437 m-1 kg-1 s3


137

1

((6.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.97118341 × 1012 m-1 kg-1 s3


2

((6.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.4855917 × 1012 m-1 kg-1 s3


3

((6.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.3237278 × 1012 m-1 kg-1 s3


4

((6.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74279585 × 1012 m-1 kg-1 s3


5

((6.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39423668 × 1012 m-1 kg-1 s3


6

((6.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1618639 × 1012 m-1 kg-1 s3


7

((6.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.95883344 × 1011 m-1 kg-1 s3


8

((6.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.71397926 × 1011 m-1 kg-1 s3


138

1

((6.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.02206795 × 1012 m-1 kg-1 s3


2

((6.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.51103398 × 1012 m-1 kg-1 s3


3

((6.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.34068932 × 1012 m-1 kg-1 s3


4

((6.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.75551699 × 1012 m-1 kg-1 s3


5

((6.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.40441359 × 1012 m-1 kg-1 s3


6

((6.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


7

((6.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00315256 × 1012 m-1 kg-1 s3


8

((6.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.77758494 × 1011 m-1 kg-1 s3


139

1

((6.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.07295251 × 1012 m-1 kg-1 s3


2

((6.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.53647625 × 1012 m-1 kg-1 s3


3

((6.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.35765084 × 1012 m-1 kg-1 s3


4

((6.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76823813 × 1012 m-1 kg-1 s3


5

((6.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4145905 × 1012 m-1 kg-1 s3


6

((6.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17882542 × 1012 m-1 kg-1 s3


7

((6.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01042179 × 1012 m-1 kg-1 s3


8

((6.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.84119063 × 1011 m-1 kg-1 s3


140

1

((6.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.12383705 × 1012 m-1 kg-1 s3


2

((6.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.56191853 × 1012 m-1 kg-1 s3


3

((6.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.37461235 × 1012 m-1 kg-1 s3


4

((6.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


5

((6.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


6

((6.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18730618 × 1012 m-1 kg-1 s3


7

((6.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


8

((6.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1011 m-1 kg-1 s3


141

1

((6.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.17472161 × 1012 m-1 kg-1 s3


2

((6.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.5873608 × 1012 m-1 kg-1 s3


3

((6.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.39157387 × 1012 m-1 kg-1 s3


4

((6.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7936804 × 1012 m-1 kg-1 s3


5

((6.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43494432 × 1012 m-1 kg-1 s3


6

((6.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19578693 × 1012 m-1 kg-1 s3


7

((6.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02496023 × 1012 m-1 kg-1 s3


8

((6.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.96840201 × 1011 m-1 kg-1 s3


142


1

((6.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.22560615 × 1012 m-1 kg-1 s3


2

((6.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.61280308 × 1012 m-1 kg-1 s3


3

((6.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.40853538 × 1012 m-1 kg-1 s3


4

((6.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.80640154 × 1012 m-1 kg-1 s3


5

((6.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44512123 × 1012 m-1 kg-1 s3


6

((6.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20426769 × 1012 m-1 kg-1 s3


7

((6.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03222945 × 1012 m-1 kg-1 s3


8

((6.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.03200769 × 1011 m-1 kg-1 s3


143

1

((6.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.27649071 × 1012 m-1 kg-1 s3


2

((6.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.63824535 × 1012 m-1 kg-1 s3


3

((6.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.4254969 × 1012 m-1 kg-1 s3


4

((6.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.81912268 × 1012 m-1 kg-1 s3


5

((6.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45529814 × 1012 m-1 kg-1 s3


6

((6.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21274845 × 1012 m-1 kg-1 s3


7

((6.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03949867 × 1012 m-1 kg-1 s3


8

((6.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.09561338 × 1011 m-1 kg-1 s3


144

1

((6.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.32737526 × 1012 m-1 kg-1 s3


2

((6.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.66368763 × 1012 m-1 kg-1 s3


3

((6.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.44245842 × 1012 m-1 kg-1 s3


4

((6.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184382 × 1012 m-1 kg-1 s3


5

((6.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.46547505 × 1012 m-1 kg-1 s3


6

((6.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


7

((6.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04676789 × 1012 m-1 kg-1 s3


8

((6.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921908 × 1011 m-1 kg-1 s3


145

1

((6.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.37825981 × 1012 m-1 kg-1 s3


2

((6.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.6891299 × 1012 m-1 kg-1 s3


3

((6.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.45941994 × 1012 m-1 kg-1 s3


4

((6.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84456495 × 1012 m-1 kg-1 s3


5

((6.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


6

((6.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22970997 × 1012 m-1 kg-1 s3


7

((6.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05403712 × 1012 m-1 kg-1 s3


8

((6.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.22282476 × 1011 m-1 kg-1 s3


146

1

((6.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.42914436 × 1012 m-1 kg-1 s3


2

((6.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.71457218 × 1012 m-1 kg-1 s3


3

((6.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.47638145 × 1012 m-1 kg-1 s3


4

((6.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.85728609 × 1012 m-1 kg-1 s3


5

((6.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.48582887 × 1012 m-1 kg-1 s3


6

((6.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23819073 × 1012 m-1 kg-1 s3


7

((6.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06130634 × 1012 m-1 kg-1 s3


8

((6.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.28643045 × 1011 m-1 kg-1 s3


147

1

((6.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48002891 × 1012 m-1 kg-1 s3


2

((6.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48002891 × 1012 m-1 kg-1 s3


3

((6.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.49334297 × 1012 m-1 kg-1 s3


4

((6.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.87000723 × 1012 m-1 kg-1 s3


5

((6.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.49600578 × 1012 m-1 kg-1 s3


6

((6.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24667148 × 1012 m-1 kg-1 s3


7

((6.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


8

((6.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.35003613 × 1011 m-1 kg-1 s3


148

1

((6.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.53091346 × 1012 m-1 kg-1 s3


2

((6.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.76545673 × 1012 m-1 kg-1 s3


3

((6.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.51030449 × 1012 m-1 kg-1 s3


4

((6.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272837 × 1012 m-1 kg-1 s3


5

((6.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50618269 × 1012 m-1 kg-1 s3


6

((6.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25515224 × 1012 m-1 kg-1 s3


7

((6.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07584478 × 1012 m-1 kg-1 s3


8

((6.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364183 × 1011 m-1 kg-1 s3

It’s about here that I realized I should be using the Planck lengths so if you want approximately much closer data /by 9.223e+18
149

1

((6.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.58179801 × 1012 m-1 kg-1 s3


2

((6.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.790899 × 1012 m-1 kg-1 s3


3

((6.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.527266 × 1012 m-1 kg-1 s3


4

((6.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8954495 × 1012 m-1 kg-1 s3


5

((6.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5163596 × 1012 m-1 kg-1 s3


6

((6.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.263633 × 1012 m-1 kg-1 s3


7

((6.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.083114 × 1012 m-1 kg-1 s3


8

((6.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.47724751 × 1011 m-1 kg-1 s3


150: Somewhere between here and 151 pm it starts to increase the connection’s gains. Probably along one or two Planck length(s).

1

((6.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268256 × 1012 m-1 kg-1 s3


2

((6.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.81634128 × 1012 m-1 kg-1 s3


3

((6.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.54422752 × 1012 m-1 kg-1 s3


4

((6.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.90817064 × 1012 m-1 kg-1 s3


5

((6.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


6

((6.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


7

((6.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09038322 × 1012 m-1 kg-1 s3


8

((6.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.5408532 × 1011 m-1 kg-1 s3


151

1

((6.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.68356711 × 1012 m-1 kg-1 s3


2

((6.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.84178355 × 1012 m-1 kg-1 s3


3

((6.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.56118904 × 1012 m-1 kg-1 s3


4

((6.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.92089178 × 1012 m-1 kg-1 s3


5

((6.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53671342 × 1012 m-1 kg-1 s3


6

((6.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28059452 × 1012 m-1 kg-1 s3


7

((6.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09765244 × 1012 m-1 kg-1 s3


8

((6.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.60445888 × 1011 m-1 kg-1 s3


152

1

((6.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.73445166 × 1012 m-1 kg-1 s3


2

((6.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.86722583 × 1012 m-1 kg-1 s3


3

((6.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.57815055 × 1012 m-1 kg-1 s3


4

((6.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361292 × 1012 m-1 kg-1 s3


5

((6.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.54689033 × 1012 m-1 kg-1 s3


6

((6.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28907528 × 1012 m-1 kg-1 s3


7

((6.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10492167 × 1012 m-1 kg-1 s3


8

((6.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1011 m-1 kg-1 s3


153

1

((6.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.78533621 × 1012 m-1 kg-1 s3


2

((6.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.8926681 × 1012 m-1 kg-1 s3


3

((6.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.59511207 × 1012 m-1 kg-1 s3


4

((6.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.94633405 × 1012 m-1 kg-1 s3


5

((6.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55706724 × 1012 m-1 kg-1 s3


6

((6.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29755603 × 1012 m-1 kg-1 s3


7

((6.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11219089 × 1012 m-1 kg-1 s3


8

((6.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.73167026 × 1011 m-1 kg-1 s3


154

1

((7.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.83622076 × 1012 m-1 kg-1 s3


2

((7.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.91811038 × 1012 m-1 kg-1 s3


3

((7.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.61207359 × 1012 m-1 kg-1 s3


4

((7.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95905519 × 1012 m-1 kg-1 s3


5

((7.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56724415 × 1012 m-1 kg-1 s3


6

((7.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30603679 × 1012 m-1 kg-1 s3


7

((7.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


8

((7.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.79527595 × 1011 m-1 kg-1 s3


155

1

((7.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.88710532 × 1012 m-1 kg-1 s3


2

((7.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.94355266 × 1012 m-1 kg-1 s3


3

((7.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.62903511 × 1012 m-1 kg-1 s3


4

((7.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.97177633 × 1012 m-1 kg-1 s3


5

((7.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


6

((7.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31451755 × 1012 m-1 kg-1 s3


7

((7.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12672933 × 1012 m-1 kg-1 s3


8

((7.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.85888165 × 1011 m-1 kg-1 s3


156

1

((7.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.93798986 × 1012 m-1 kg-1 s3


2

((7.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.96899493 × 1012 m-1 kg-1 s3


3

((7.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.64599662 × 1012 m-1 kg-1 s3


4

((7.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449747 × 1012 m-1 kg-1 s3


5

((7.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.58759797 × 1012 m-1 kg-1 s3


6

((7.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


7

((7.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13399855 × 1012 m-1 kg-1 s3


8

((7.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248733 × 1011 m-1 kg-1 s3


157

1

((7.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.98887442 × 1012 m-1 kg-1 s3


2

((7.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.99443721 × 1012 m-1 kg-1 s3


3

((7.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.66295814 × 1012 m-1 kg-1 s3


4

((7.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9972186 × 1012 m-1 kg-1 s3


5

((7.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.59777488 × 1012 m-1 kg-1 s3


6

((7.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33147907 × 1012 m-1 kg-1 s3


7

((7.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14126777 × 1012 m-1 kg-1 s3


8

((7.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.98609302 × 1011 m-1 kg-1 s3


158

1

((7.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.03975896 × 1012 m-1 kg-1 s3


2

((7.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.01987948 × 1012 m-1 kg-1 s3


3

((7.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.67991965 × 1012 m-1 kg-1 s3


4

((7.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00993974 × 1012 m-1 kg-1 s3


5

((7.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60795179 × 1012 m-1 kg-1 s3


6

((7.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33995983 × 1012 m-1 kg-1 s3


7

((7.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14853699 × 1012 m-1 kg-1 s3


8

((7.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00496987 × 1012 m-1 kg-1 s3


159

1

((7.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.09064352 × 1012 m-1 kg-1 s3


2

((7.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.04532176 × 1012 m-1 kg-1 s3


3

((7.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.69688117 × 1012 m-1 kg-1 s3


4

((7.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.02266088 × 1012 m-1 kg-1 s3


5

((7.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6181287 × 1012 m-1 kg-1 s3


6

((7.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34844059 × 1012 m-1 kg-1 s3


7

((7.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15580622 × 1012 m-1 kg-1 s3


8

((7.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01133044 × 1012 m-1 kg-1 s3


160

1

((7.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152806 × 1012 m-1 kg-1 s3


2

((7.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.07076403 × 1012 m-1 kg-1 s3


3

((7.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.71384269 × 1012 m-1 kg-1 s3


4

((7.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538201 × 1012 m-1 kg-1 s3


5

((7.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


6

((7.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35692134 × 1012 m-1 kg-1 s3


7

((7.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16307544 × 1012 m-1 kg-1 s3


8

((7.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


161

1

((7.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.19241262 × 1012 m-1 kg-1 s3


2

((7.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.09620631 × 1012 m-1 kg-1 s3


3

((7.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.73080421 × 1012 m-1 kg-1 s3


4

((7.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.04810315 × 1012 m-1 kg-1 s3


5

((7.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.63848252 × 1012 m-1 kg-1 s3


6

((7.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3654021 × 1012 m-1 kg-1 s3


7

((7.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


8

((7.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02405158 × 1012 m-1 kg-1 s3


162

1

((7.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.24329716 × 1012 m-1 kg-1 s3


2

((7.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.12164858 × 1012 m-1 kg-1 s3


3

((7.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.74776572 × 1012 m-1 kg-1 s3


4

((7.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.06082429 × 1012 m-1 kg-1 s3


5

((7.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64865943 × 1012 m-1 kg-1 s3


6

((7.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


7

((7.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17761388 × 1012 m-1 kg-1 s3


8

((7.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03041214 × 1012 m-1 kg-1 s3


163

1

((7.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.29418172 × 1012 m-1 kg-1 s3


2

((7.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.14709086 × 1012 m-1 kg-1 s3


3

((7.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.76472724 × 1012 m-1 kg-1 s3


4

((7.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.07354543 × 1012 m-1 kg-1 s3


5

((7.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65883634 × 1012 m-1 kg-1 s3


6

((7.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38236362 × 1012 m-1 kg-1 s3


7

((7.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1848831 × 1012 m-1 kg-1 s3


8

((7.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03677271 × 1012 m-1 kg-1 s3


164

1

((7.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.34506626 × 1012 m-1 kg-1 s3


2

((7.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.17253313 × 1012 m-1 kg-1 s3


3

((7.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.78168875 × 1012 m-1 kg-1 s3


4

((7.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.08626656 × 1012 m-1 kg-1 s3


5

((7.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66901325 × 1012 m-1 kg-1 s3


6

((7.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39084438 × 1012 m-1 kg-1 s3


7

((7.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19215232 × 1012 m-1 kg-1 s3


8

((7.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04313328 × 1012 m-1 kg-1 s3


165

1

((7.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.39595081 × 1012 m-1 kg-1 s3


2

((7.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.19797541 × 1012 m-1 kg-1 s3


3

((7.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.79865027 × 1012 m-1 kg-1 s3


4

((7.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0989877 × 1012 m-1 kg-1 s3


5

((7.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


6

((7.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39932514 × 1012 m-1 kg-1 s3


7

((7.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19942154 × 1012 m-1 kg-1 s3


8

((7.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04949385 × 1012 m-1 kg-1 s3


166

1

((7.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.44683537 × 1012 m-1 kg-1 s3


2

((7.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.22341769 × 1012 m-1 kg-1 s3


3

((7.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.81561179 × 1012 m-1 kg-1 s3


4

((7.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.11170884 × 1012 m-1 kg-1 s3


5

((7.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.68936707 × 1012 m-1 kg-1 s3


6

((7.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4078059 × 1012 m-1 kg-1 s3


7

((7.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20669077 × 1012 m-1 kg-1 s3


8

((7.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05585442 × 1012 m-1 kg-1 s3


167

1

((7.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.49771991 × 1012 m-1 kg-1 s3


2

((7.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.24885996 × 1012 m-1 kg-1 s3


3

((7.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.8325733 × 1012 m-1 kg-1 s3


4

((7.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.12442998 × 1012 m-1 kg-1 s3


5

((7.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.69954398 × 1012 m-1 kg-1 s3


6

((7.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41628665 × 1012 m-1 kg-1 s3


7

((7.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21395999 × 1012 m-1 kg-1 s3


8

((7.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06221499 × 1012 m-1 kg-1 s3


168

1

((7.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.54860447 × 1012 m-1 kg-1 s3


2

((7.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.27430224 × 1012 m-1 kg-1 s3


3

((7.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.84953482 × 1012 m-1 kg-1 s3


4

((7.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.13715112 × 1012 m-1 kg-1 s3


5

((7.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.70972089 × 1012 m-1 kg-1 s3


6

((7.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


7

((7.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


8

((7.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


169

1

((7.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.59948901 × 1012 m-1 kg-1 s3


2

((7.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.29974451 × 1012 m-1 kg-1 s3


3

((7.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.86649634 × 1012 m-1 kg-1 s3


4

((7.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.14987225 × 1012 m-1 kg-1 s3


5

((7.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7198978 × 1012 m-1 kg-1 s3


6

((7.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43324817 × 1012 m-1 kg-1 s3


7

((7.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22849843 × 1012 m-1 kg-1 s3


8

((7.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07493613 × 1012 m-1 kg-1 s3


170

1

((7.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1012 m-1 kg-1 s3


2

((7.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.32518678 × 1012 m-1 kg-1 s3


3

((7.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.88345786 × 1012 m-1 kg-1 s3


4

((7.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.16259339 × 1012 m-1 kg-1 s3


5

((7.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.73007471 × 1012 m-1 kg-1 s3


6

((7.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44172893 × 1012 m-1 kg-1 s3


7

((7.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23576765 × 1012 m-1 kg-1 s3


8

((7.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0812967 × 1012 m-1 kg-1 s3


171

1

((7.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.70125811 × 1012 m-1 kg-1 s3


2

((7.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.35062906 × 1012 m-1 kg-1 s3


3

((7.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.90041937 × 1012 m-1 kg-1 s3


4

((7.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.17531453 × 1012 m-1 kg-1 s3


5

((7.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74025162 × 1012 m-1 kg-1 s3


6

((7.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45020969 × 1012 m-1 kg-1 s3


7

((7.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24303687 × 1012 m-1 kg-1 s3


8

((7.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08765726 × 1012 m-1 kg-1 s3


172

1

((7.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.75214267 × 1012 m-1 kg-1 s3


2

((7.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.37607133 × 1012 m-1 kg-1 s3


3

((7.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.91738089 × 1012 m-1 kg-1 s3


4

((7.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.18803567 × 1012 m-1 kg-1 s3


5

((7.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.75042853 × 1012 m-1 kg-1 s3


6

((7.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45869044 × 1012 m-1 kg-1 s3


7

((7.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2503061 × 1012 m-1 kg-1 s3


8

((7.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09401783 × 1012 m-1 kg-1 s3


173

1

((7.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.80302721 × 1012 m-1 kg-1 s3


2

((7.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.40151361 × 1012 m-1 kg-1 s3


3

((7.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.9343424 × 1012 m-1 kg-1 s3


4

((7.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.2007568 × 1012 m-1 kg-1 s3


5

((7.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76060544 × 1012 m-1 kg-1 s3


6

((7.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4671712 × 1012 m-1 kg-1 s3


7

((7.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25757532 × 1012 m-1 kg-1 s3


8

((7.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1003784 × 1012 m-1 kg-1 s3


174

1

((7.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.85391177 × 1012 m-1 kg-1 s3


2

((7.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.42695588 × 1012 m-1 kg-1 s3


3

((7.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.95130392 × 1012 m-1 kg-1 s3


4

((7.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.21347794 × 1012 m-1 kg-1 s3


5

((7.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.77078235 × 1012 m-1 kg-1 s3


6

((7.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


7

((7.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26484454 × 1012 m-1 kg-1 s3


8

((7.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10673897 × 1012 m-1 kg-1 s3


175

1

((7.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1012 m-1 kg-1 s3


2

((7.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.45239816 × 1012 m-1 kg-1 s3


3

((7.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.96826544 × 1012 m-1 kg-1 s3


4

((7.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.22619908 × 1012 m-1 kg-1 s3


5

((7.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


6

((7.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.48413272 × 1012 m-1 kg-1 s3


7

((7.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


8

((7.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11309954 × 1012 m-1 kg-1 s3


176

1

((8.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.95568087 × 1012 m-1 kg-1 s3


2

((8.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.47784043 × 1012 m-1 kg-1 s3


3

((8.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.98522696 × 1012 m-1 kg-1 s3


4

((8.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.23892022 × 1012 m-1 kg-1 s3


5

((8.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.79113617 × 1012 m-1 kg-1 s3


6

((8.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.49261348 × 1012 m-1 kg-1 s3


7

((8.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27938298 × 1012 m-1 kg-1 s3


8

((8.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


177

1

((8.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.00656542 × 1012 m-1 kg-1 s3


2

((8.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.50328271 × 1012 m-1 kg-1 s3


3

((8.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.00218847 × 1012 m-1 kg-1 s3


4

((8.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.25164136 × 1012 m-1 kg-1 s3


5

((8.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.80131308 × 1012 m-1 kg-1 s3


6

((8.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50109424 × 1012 m-1 kg-1 s3


7

((8.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2866522 × 1012 m-1 kg-1 s3


8

((8.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12582068 × 1012 m-1 kg-1 s3


178

1

((8.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.05744997 × 1012 m-1 kg-1 s3


2

((8.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.52872498 × 1012 m-1 kg-1 s3


3

((8.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.01914999 × 1012 m-1 kg-1 s3


4

((8.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.26436249 × 1012 m-1 kg-1 s3


5

((8.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.81148999 × 1012 m-1 kg-1 s3


6

((8.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50957499 × 1012 m-1 kg-1 s3


7

((8.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29392142 × 1012 m-1 kg-1 s3


8

((8.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13218125 × 1012 m-1 kg-1 s3


179

1

((8.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.10833452 × 1012 m-1 kg-1 s3


2

((8.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.55416726 × 1012 m-1 kg-1 s3


3

((8.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.03611151 × 1012 m-1 kg-1 s3


4

((8.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.27708363 × 1012 m-1 kg-1 s3


5

((8.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8216669 × 1012 m-1 kg-1 s3


6

((8.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.51805575 × 1012 m-1 kg-1 s3


7

((8.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30119065 × 1012 m-1 kg-1 s3


8

((8.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13854182 × 1012 m-1 kg-1 s3


180

1

((8.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921907 × 1012 m-1 kg-1 s3


2

((8.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.57960953 × 1012 m-1 kg-1 s3


3

((8.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.05307302 × 1012 m-1 kg-1 s3


4

((8.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.28980477 × 1012 m-1 kg-1 s3


5

((8.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184381 × 1012 m-1 kg-1 s3


6

((8.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


7

((8.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30845987 × 1012 m-1 kg-1 s3


8

((8.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14490238 × 1012 m-1 kg-1 s3


181

1

((8.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.21010362 × 1012 m-1 kg-1 s3


2

((8.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.60505181 × 1012 m-1 kg-1 s3


3

((8.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.07003454 × 1012 m-1 kg-1 s3


4

((8.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.30252591 × 1012 m-1 kg-1 s3


5

((8.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84202072 × 1012 m-1 kg-1 s3


6

((8.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53501727 × 1012 m-1 kg-1 s3


7

((8.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31572909 × 1012 m-1 kg-1 s3


8

((8.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15126295 × 1012 m-1 kg-1 s3


182

1

((8.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.26098817 × 1012 m-1 kg-1 s3


2

((8.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.63049408 × 1012 m-1 kg-1 s3


3

((8.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.08699606 × 1012 m-1 kg-1 s3


4

((8.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.31524704 × 1012 m-1 kg-1 s3


5

((8.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.85219763 × 1012 m-1 kg-1 s3


6

((8.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.54349803 × 1012 m-1 kg-1 s3


7

((8.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


8

((8.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15762352 × 1012 m-1 kg-1 s3


183

1

((8.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.31187272 × 1012 m-1 kg-1 s3


2

((8.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.65593636 × 1012 m-1 kg-1 s3


3

((8.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.10395757 × 1012 m-1 kg-1 s3


4

((8.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.32796818 × 1012 m-1 kg-1 s3


5

((8.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.86237454 × 1012 m-1 kg-1 s3


6

((8.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55197879 × 1012 m-1 kg-1 s3


7

((8.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33026753 × 1012 m-1 kg-1 s3


8

((8.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16398409 × 1012 m-1 kg-1 s3


184

1

((8.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.36275727 × 1012 m-1 kg-1 s3


2

((8.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.68137863 × 1012 m-1 kg-1 s3


3

((8.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.12091909 × 1012 m-1 kg-1 s3


4

((8.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.34068932 × 1012 m-1 kg-1 s3


5

((8.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.87255145 × 1012 m-1 kg-1 s3


6

((8.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56045954 × 1012 m-1 kg-1 s3


7

((8.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33753675 × 1012 m-1 kg-1 s3


8

((8.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


185

1

((8.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364182 × 1012 m-1 kg-1 s3


2

((8.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.70682091 × 1012 m-1 kg-1 s3


3

((8.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.13788061 × 1012 m-1 kg-1 s3


4

((8.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.35341046 × 1012 m-1 kg-1 s3


5

((8.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272836 × 1012 m-1 kg-1 s3


6

((8.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5689403 × 1012 m-1 kg-1 s3


7

((8.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34480597 × 1012 m-1 kg-1 s3


8

((8.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17670523 × 1012 m-1 kg-1 s3


186

1

((8.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.46452637 × 1012 m-1 kg-1 s3


2

((8.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.73226318 × 1012 m-1 kg-1 s3


3

((8.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.15484212 × 1012 m-1 kg-1 s3


4

((8.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.36613159 × 1012 m-1 kg-1 s3


5

((8.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.89290527 × 1012 m-1 kg-1 s3


6

((8.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


7

((8.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3520752 × 1012 m-1 kg-1 s3


8

((8.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1830658 × 1012 m-1 kg-1 s3


187

1

((8.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.51541092 × 1012 m-1 kg-1 s3


2

((8.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.75770546 × 1012 m-1 kg-1 s3


3

((8.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.17180364 × 1012 m-1 kg-1 s3


4

((8.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.37885273 × 1012 m-1 kg-1 s3


5

((8.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.90308218 × 1012 m-1 kg-1 s3


6

((8.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.58590182 × 1012 m-1 kg-1 s3


7

((8.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35934442 × 1012 m-1 kg-1 s3


8

((8.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18942637 × 1012 m-1 kg-1 s3


188

1

((8.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.56629548 × 1012 m-1 kg-1 s3


2

((8.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.78314774 × 1012 m-1 kg-1 s3


3

((8.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.18876516 × 1012 m-1 kg-1 s3


4

((8.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.39157387 × 1012 m-1 kg-1 s3


5

((8.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9132591 × 1012 m-1 kg-1 s3


6

((8.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.59438258 × 1012 m-1 kg-1 s3


7

((8.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36661364 × 1012 m-1 kg-1 s3


8

((8.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19578693 × 1012 m-1 kg-1 s3


189

1

((8.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.61718002 × 1012 m-1 kg-1 s3


2

((8.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.80859001 × 1012 m-1 kg-1 s3


3

((8.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.20572667 × 1012 m-1 kg-1 s3


4

((8.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.40429501 × 1012 m-1 kg-1 s3


5

((8.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.923436 × 1012 m-1 kg-1 s3


6

((8.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60286334 × 1012 m-1 kg-1 s3


7

((8.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


8

((8.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2021475 × 1012 m-1 kg-1 s3


190

1

((8.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1012 m-1 kg-1 s3


2

((8.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.83403229 × 1012 m-1 kg-1 s3


3

((8.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.22268819 × 1012 m-1 kg-1 s3


4

((8.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.41701614 × 1012 m-1 kg-1 s3


5

((8.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361292 × 1012 m-1 kg-1 s3


6

((8.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6113441 × 1012 m-1 kg-1 s3


7

((8.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38115208 × 1012 m-1 kg-1 s3


8

((8.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20850807 × 1012 m-1 kg-1 s3


191

1

((8.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.71894912 × 1012 m-1 kg-1 s3


2

((8.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.85947456 × 1012 m-1 kg-1 s3


3

((8.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.23964971 × 1012 m-1 kg-1 s3


4

((8.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.42973728 × 1012 m-1 kg-1 s3


5

((8.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.94378982 × 1012 m-1 kg-1 s3


6

((8.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.61982485 × 1012 m-1 kg-1 s3


7

((8.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3884213 × 1012 m-1 kg-1 s3


8

((8.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21486864 × 1012 m-1 kg-1 s3


192

1

((8.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.76983368 × 1012 m-1 kg-1 s3


2

((8.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.88491684 × 1012 m-1 kg-1 s3


3

((8.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.25661123 × 1012 m-1 kg-1 s3


4

((8.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.44245842 × 1012 m-1 kg-1 s3


5

((8.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95396674 × 1012 m-1 kg-1 s3


6

((8.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


7

((8.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39569053 × 1012 m-1 kg-1 s3


8

((8.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


193

1

((8.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.82071822 × 1012 m-1 kg-1 s3


2

((8.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.91035911 × 1012 m-1 kg-1 s3


3

((8.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.27357274 × 1012 m-1 kg-1 s3


4

((8.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.45517956 × 1012 m-1 kg-1 s3


5

((8.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.96414364 × 1012 m-1 kg-1 s3


6

((8.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.63678637 × 1012 m-1 kg-1 s3


7

((8.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.40295975 × 1012 m-1 kg-1 s3


8

((8.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22758978 × 1012 m-1 kg-1 s3


194

1

((8.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.87160278 × 1012 m-1 kg-1 s3


2

((8.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.93580139 × 1012 m-1 kg-1 s3


3

((8.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.29053426 × 1012 m-1 kg-1 s3


4

((8.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.46790069 × 1012 m-1 kg-1 s3


5

((8.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.97432056 × 1012 m-1 kg-1 s3


6

((8.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64526713 × 1012 m-1 kg-1 s3


7

((8.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41022897 × 1012 m-1 kg-1 s3


8

((8.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23395035 × 1012 m-1 kg-1 s3


195

1

((8.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248732 × 1012 m-1 kg-1 s3


2

((8.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.96124366 × 1012 m-1 kg-1 s3


3

((8.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.30749577 × 1012 m-1 kg-1 s3


4

((8.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.48062183 × 1012 m-1 kg-1 s3


5

((8.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449746 × 1012 m-1 kg-1 s3


6

((8.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65374789 × 1012 m-1 kg-1 s3


7

((8.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41749819 × 1012 m-1 kg-1 s3


8

((8.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24031092 × 1012 m-1 kg-1 s3


196

1

((8.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.97337188 × 1012 m-1 kg-1 s3


2

((8.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.98668594 × 1012 m-1 kg-1 s3


3

((8.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.32445729 × 1012 m-1 kg-1 s3


4

((8.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.49334297 × 1012 m-1 kg-1 s3


5

((8.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.99467438 × 1012 m-1 kg-1 s3


6

((8.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66222865 × 1012 m-1 kg-1 s3


7

((8.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


8

((8.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24667148 × 1012 m-1 kg-1 s3


197

1

((8.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00242564 × 1013 m-1 kg-1 s3


2

((8.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.01212821 × 1012 m-1 kg-1 s3


3

((8.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.34141881 × 1012 m-1 kg-1 s3


4

((8.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.50606411 × 1012 m-1 kg-1 s3


5

((8.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00485128 × 1012 m-1 kg-1 s3


6

((8.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6707094 × 1012 m-1 kg-1 s3


7

((8.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43203663 × 1012 m-1 kg-1 s3


8

((8.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25303205 × 1012 m-1 kg-1 s3


198

1

((9.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0075141 × 1013 m-1 kg-1 s3


2

((9.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.03757049 × 1012 m-1 kg-1 s3


3

((9.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.35838033 × 1012 m-1 kg-1 s3


4

((9.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.51878524 × 1012 m-1 kg-1 s3


5

((9.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0150282 × 1012 m-1 kg-1 s3


6

((9.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


7

((9.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43930585 × 1012 m-1 kg-1 s3


8

((9.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25939262 × 1012 m-1 kg-1 s3


199

1

((9.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01260255 × 1013 m-1 kg-1 s3


2

((9.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.06301277 × 1012 m-1 kg-1 s3


3

((9.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.37534184 × 1012 m-1 kg-1 s3


4

((9.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.53150638 × 1012 m-1 kg-1 s3


5

((9.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.02520511 × 1012 m-1 kg-1 s3


6

((9.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.68767092 × 1012 m-1 kg-1 s3


7

((9.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44657508 × 1012 m-1 kg-1 s3


8

((9.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26575319 × 1012 m-1 kg-1 s3


200

1

((9.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1013 m-1 kg-1 s3


2

((9.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.08845504 × 1012 m-1 kg-1 s3


3

((9.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.39230336 × 1012 m-1 kg-1 s3


4

((9.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.54422752 × 1012 m-1 kg-1 s3


5

((9.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538202 × 1012 m-1 kg-1 s3


6

((9.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.69615168 × 1012 m-1 kg-1 s3


7

((9.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4538443 × 1012 m-1 kg-1 s3


8

((9.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


On Photons moving both backwards and forwards in time and why it’s important for computer construction.

First we know that photons are elementary particles that function both as a wave or a particle at a certain time though not both at once.

We know that we want to use either or for the production of bits of information. Particles for individual computations and waves for larger computations if enough bits of information can be read correctly at the same time waves may be superior at the cost of space used to propagate an answer. A single wave offering massive functionality within a larger area though they can be condensed if you refract the waves up one the nuclei of the atoms within each other without cross sectioning each other—though that may also be useful as an additional functionary device within the function schema. Perhaps if they cross they mean they multiple or if they don’t they remain untouched. If they interfere with an electron they divide. Something like that as a simple example. Individual particles get us exact answers over and over if read repeatedly. Very quickly and take little energy to wave reading unless you collapse a wave function into a rotational amount feasibly readable as though they were particles. You don’t need waves to read waves if you’re looking to collect specific bits of data Just sets of particles to oscillate and deform the readable wave function. You do need if you want a single read of an entire function in a go in one mass deformation. So you build a function map using all types of functions you might possibly want around in such a way that the photons moving both backwards and forwards/sideways in time have a chance to interact with the system. What you may be reading isn’t in fact the current set of photons but photons from the past passing through the system in reverse but since the male is segmented so that it repeats itself at various angles/degrees it may not matter. But you would know this by first placing it in the center of a room and bombarding it with photons and seeing which side lit up first. My understanding is that there are four positions from Feynman’s research a photon travels based on their delivery.

So eventually we get good enough at bouncing these waves and particles of photons throughout the system of lattices to get multiple answers at once Multiplied by the number of deformation levels we want (each wave particle is computer generated to deform through the run systematically causing little to no error outside of the lasers need to be on the best gimbal possible). The thing about setting up a function map physically is that you can pick and choose which bits you want read from the read direction. But anyway we get good enough we get down to the gluon method using QCD which has eight methods of propagation. And that’s when we start bouncing gluons off of quarks in much the same method reducing the size exponentially further but in much the same manner. Then the real fun begins.

-J.

Ideas on quantum computing. Spiral quantum computer. Cross index 3-d. Solid or superfluid oxygen low loss fast switching optical switch (radial).

These are all just ideas I’ve had over the past few days while I can’t sleep or am bored.

Set up the connections between electron joints so that parallel connections pattern predictably once mapped.

Image 1

You do this by applying rings of electrons fast enough but not overbearing around Atoms until you find their wave functions.

Then you join them.

Then their rotational points are juiced and patterned. Cross index in 3-d. And you get a matrix for full computation within a finite space. Using atoms with differing wave functions gives you depending on whether you want to get past qubit measurements and get into the next area after that by superimposing vastly more options of travel and spin then you’ll see that not only does it go side ways and up but backwards and down as well. Start from the center or not. It just changes the speed of retaliation and production against the boundaries.

Then you can get patterns within patterns. Fractal states of information as collisions occur and you build higher function math from them.

Quantum computer uses light. Photons.

Ultra fast low loss optical switching.

Mass of a proton:

electron mass / 1836 =

4.96153789 × 10-34 kilograms

0.00000000000000000000000000000496153789kg

4.96153789 * (10^(-34)) kilograms =

4.96153789 × 10^-19 picograms

1 picogram [pg] = 602213665167.52 Atomic mass unit [u]

Carbon 12.0107 u = 7.2330077e+12 pg

Oxygen 8 u = 4.8177093e+12 pg

You’d have a pyramid of carbon with an atom of oxygen fullerene in the center as an optical switch reinforced outside from the temp so there’s only needed size for photon transmission. Heat cool the inside to keep it change state between solid aNd liquid or just solid.

If solid it’s blue—supposedly best colour being the coolest. It’s easily space stable but may burn out unless super fluid. But you could lattice it as a liquid and freeze it using carbon as the cooling agent to get below superfluid state becoming optically superclear as long as the fullerene pyramids are secured and wrapped in tape or foil to not over expand and keep fluid stably inside container. But -455 is 22 times ish larger than their earth size. So you’d make crystal lattices of solid oxygen and focus the beams as well as build switching beams.

So not tiny but not huge either. 170 x 22 1700 3400 3740 pm. Per carbon. Times two 7480 pm. .007480 microns.

Oh no you wouldn’t. You’d do a radial encompassing of carbon. Not a pyramid unless tiny focus is needed. Radial allows tubular bonds and liquid oxygen superfluid construction around any angle.

Radial design.

Image 2

Audio transcript:

So with the electrons of liquid oxygen cooled to the level of space which I think is negative 400 degrees so that’s at least minus 200 kelvin. So that make that a solid. You line up the electron points. Where they bond and those are your focal points. For the uh low loss high precision light switch and you can get a directional one by cycling the speed of the electron spin as they’re bonded because as they slow down because they’re a solid I don’t know if they’re going to stop or not or if they would,but you’d measure the cycle of number eight is bailable for this number of micro seconds and then it goes 7 dead (or less depending on bit rate) and then 8 again and it’ll carry it so you just ping it on number 8 it carries it around and pings it to the next part and if you wanted to you could ping it continuously all the valence electrons for oxygen or however many are avail label in the build which I think there are 2 since it’s a single atom build easier and less fractal but you could easily add more. It’s a lot of time. Once you do the timing you should be good really.

You could double bond 3 of the carbon from the oxygen and have 4 times the connection speed. It depends on what you want.

If atomic clocks can measure the state of electrons jumping 1/1836 times that will measure the speed of a photon over some distance. Assume C. Electron is 2200 km /sec /1836= 1.19825708061 so we know that the distance traveled is roughly 1.2 kilometers away so you’d have a receiver there. Node system. entanglement is roughly useful because you can have non entangled and entangled as 1/0 and as long as placement is correct they should start computing relative to outside forces. Does an entangle particle hitting another entangled particle make a quad or does it split it into four single lower states. Do the states become additive or are they reversing between each other.

You just build receivers that can take both types in either state fired from either an array a cube or sphere to and encompassing shape of a larger size that lets you translate the material into knowable mathematics.

From there if you can get change states between entangled and non that travel the same distance to be received you can create higher order math functions.

Can you Tri split a photon. Yes. Can a photon be split into it natural seven or so states of light waves. All of those are information schema. Or mathematical languages/operators if you want to base them off of straight photon is 1/0. It’s just a matter of figuring out the distances needed to travel to receive and translate. Then you take those early examples and speed them up to shorten the distance until you get any size ( high heat) photon receiving you want. But blue is probably easiest. Perhaps the liquid oxygen optical switch will help. Then you build solid optical switches in each wave length and each receiver ship, likely different distances based on wave function until you get them small enough.

Easiest way to do this is to build them on stands (rural or on top of buildings) that have no interruptions within their path, or the ability because light refracts on mass to aim it as needed. You’ll lose packets if you hit a bird, clouds or smog. Any diffusion. I wonder what the accuracy if teleportation was within. Which boundary. Probably classified.

Image 3

Image 4

quantum-computing.m4a

Image 5

F function determined by wavelength depth, speed. Position relative to others in series until we reach f alpha or the function asked for. Refraction plays a big part in this too.

Transmission both forwards and backwards. Hits wave length. Gather wavelength at specific point. Determine value by mapping wave lengths values in physical space as numerical weights or as percentages or what have you–some operator through the deterministic material. Wave length can continue or stop but it comes into contact with receiving layer or the function layer which accepts the photon and creates a value. Continues southward until all functions and types of functions are determined.

light-changing-colour-quantum-computer..m4a

This is what I’ve got so far. I don’t know if it will work but it’s what I would try to see what happens.

Edit 1/29/19: