The Range of Photon Energies Transmission Between Atomic Picometer Bonds and their Energies Mathematics in Average Earth Gravity over Time:

Photon: A particle representing a quantum of light or other electromagnetic radiation. A photon carries energy proportional to the radiation frequency but has zero rest mass.

Quantum: A particle representing a quantum of light or other electromagnetic radiation. A photon carries energy proportional to the radiation frequency but has zero rest mass.

‘This excess energy is emitted in quanta of electromagnetic radiation (photons of light) that have exactly same energy as the difference in energy between the orbits jumped by the electron.’

Let’s play a game: One where the distances energies over time between any number of atomic bonds of any kind’s electrons have been mapped.

Actually let me do that for you.

If this makes sense…

The things we need to know:
The atom type one. The atom type 2. Their bond lengths (the distance an electron would need to jump over the to the new outer shell tells us everything we need to know about photon travels per atom type pairings). The energy in Kj/Mol to break that bond. You’ll see why once this document is done. This is likely going to be quite dry so get yourself something to drink.

We’re assuming we can remove an electron from any atom type here. Just one to start. There are deep delving shell subsystems to be implemented when asked but it’s not as complicated as you’d think. (Hertz of the outer ring/ the size of the number of electrons in the shell as multiplied by it’s/their gravitational environment) should give you the speed of the outer shell, plus done again once those are found to show the differences in the wobble between the shells that occur naturally as the electrons pass by each other and interact upon each other. The wave function of the electrons as they pass around the nucleus. Basic stuff.

We know that an electron in “motion” (as far as I’ve been told) is 2,200 km/sec and weigh within an 1836th ratio of a proton. Electron Weight: 9.109×10−31 kg. Proton Weight: 1.67262 × 10−27 kg.

Again quite dry. I’m about to try to list out all the paired combinations of atoms, their valence bonds, the distance of the two central points of the two atoms plus their bond distance up until I can no longer. The question we have to ask is where does the photon form? Along the rim of one of the atoms, depending on it’s nature, or at the meeting point depending on their differences?

I realized that I could make this easier on myself by computing the averages from 100 to 200 picometers, than computing all of the single, double, and triple, bonds per dual atoms relationship.
So let’s try that.

[100 picometers/(2200 kilometers x *(1-8 [9.109×10−31 kg] electrons in valence shell))]*[Gravity’s action on the average masses {9.80665 m/s2(within 7 parts per billion as governed by this Earth bound experiment: https://news.stanford.edu/pr/99/atomgravity990825.html.)}]

100. Figuring out how to get it done for each electron valence number.

The energies of the bonds of a 100 picometer bond from 1-8 valence electrons. There is an error here. It should read / by Average Gravity of Earth not Multiplied.

_________Sample [1 electron at 102 pm/2200km/sec] ________

102: ((4.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 (m / (s^2))) =
______________________________________________________________

101:
1:

((4.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.13933959 × 1012 m-1 kg-1 s3


2:

((4.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.56966979 × 1012 m-1 kg-1 s3


3:

((4.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7131132 × 1012 m-1 kg-1 s3


4:

((4.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2848349 × 1012 m-1 kg-1 s3


5:

((4.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02786792 × 1012 m-1 kg-1 s3


6:

((4.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.56556598 × 1011 m-1 kg-1 s3


7:

((4.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.3419137 × 1011 m-1 kg-1 s3


8:

((4.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.42417449 × 1011 m-1 kg-1 s3


102:

1:

((4.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.19022414 × 1012 m-1 kg-1 s3


2:

((4.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.59511207 × 1012 m-1 kg-1 s3


3:

((4.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.73007471 × 1012 m-1 kg-1 s3


4:

((4.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29755604 × 1012 m-1 kg-1 s3


5:

((4.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03804483 × 1012 m-1 kg-1 s3


6:

((4.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1011 m-1 kg-1 s3


7:

((4.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.41460592 × 1011 m-1 kg-1 s3


8:

((4.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.48778018 × 1011 m-1 kg-1 s3


103:

1:

((4.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.24110869 × 1012 m-1 kg-1 s3


2:

((4.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.62055434 × 1012 m-1 kg-1 s3


3:

((4.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74703623 × 1012 m-1 kg-1 s3


4:

((4.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31027717 × 1012 m-1 kg-1 s3


5:

((4.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04822174 × 1012 m-1 kg-1 s3


6:

((4.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.73518115 × 1011 m-1 kg-1 s3


7:

((4.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48729813 × 1011 m-1 kg-1 s3


8:

((4.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.55138586 × 1011 m-1 kg-1 s3


104

1

((4.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.29199324 × 1012 m-1 kg-1 s3


2

((4.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.64599662 × 1012 m-1 kg-1 s3


3

((4.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76399775 × 1012 m-1 kg-1 s3


4

((4.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


5

((4.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05839865 × 1012 m-1 kg-1 s3


6

((4.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.81998874 × 1011 m-1 kg-1 s3


7

((4.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.55999035 × 1011 m-1 kg-1 s3


8

((4.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.61499155 × 1011 m-1 kg-1 s3


105

1

((4.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.34287779 × 1012 m-1 kg-1 s3


2

((4.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.67143889 × 1012 m-1 kg-1 s3


3

((4.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


4

((4.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33571945 × 1012 m-1 kg-1 s3


5

((4.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


6

((4.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1011 m-1 kg-1 s3


7

((4.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268255 × 1011 m-1 kg-1 s3


8

((4.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.67859724 × 1011 m-1 kg-1 s3


106

1

((4.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.39376234 × 1012 m-1 kg-1 s3


2

((4.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.69688117 × 1012 m-1 kg-1 s3


3

((4.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.79792078 × 1012 m-1 kg-1 s3


4

((4.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34844059 × 1012 m-1 kg-1 s3


5

((4.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07875247 × 1012 m-1 kg-1 s3


6

((4.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.98960391 × 1011 m-1 kg-1 s3


7

((4.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.70537478 × 1011 m-1 kg-1 s3


8

((4.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.74220293 × 1011 m-1 kg-1 s3


107

1

((4.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.44464689 × 1012 m-1 kg-1 s3


2

((4.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.72232344 × 1012 m-1 kg-1 s3


3

((4.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8148823 × 1012 m-1 kg-1 s3


4

((4.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36116172 × 1012 m-1 kg-1 s3


5

((4.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08892938 × 1012 m-1 kg-1 s3


6

((4.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.07441148 × 1011 m-1 kg-1 s3


7

((4.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.77806698 × 1011 m-1 kg-1 s3


8

((4.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.80580861 × 1011 m-1 kg-1 s3


108

1

((4.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.49553144 × 1012 m-1 kg-1 s3


2

((4.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.74776572 × 1012 m-1 kg-1 s3


3

((4.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184381 × 1012 m-1 kg-1 s3


4

((4.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


5

((4.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09910629 × 1012 m-1 kg-1 s3


6

((4.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921907 × 1011 m-1 kg-1 s3


7

((4.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.85075921 × 1011 m-1 kg-1 s3


8

((4.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.8694143 × 1011 m-1 kg-1 s3


109

1

((4.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.54641599 × 1012 m-1 kg-1 s3


2

((4.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.77320799 × 1012 m-1 kg-1 s3


3

((4.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84880533 × 1012 m-1 kg-1 s3


4

((4.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.386604 × 1012 m-1 kg-1 s3


5

((4.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1092832 × 1012 m-1 kg-1 s3


6

((4.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1092832 × 1012 m-1 kg-1 s3


7

((4.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.92345141 × 1011 m-1 kg-1 s3


8

((4.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.93301998 × 1011 m-1 kg-1 s3


110

1

((5.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.59730054 × 1012 m-1 kg-1 s3


2

((5.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.79865027 × 1012 m-1 kg-1 s3


3

((5.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.86576685 × 1012 m-1 kg-1 s3


4

((5.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39932514 × 1012 m-1 kg-1 s3


5

((5.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


6

((5.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.32883424 × 1011 m-1 kg-1 s3


7

((5.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.99614363 × 1011 m-1 kg-1 s3


8

((5.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.99662568 × 1011 m-1 kg-1 s3


111

1

((5.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.6481851 × 1012 m-1 kg-1 s3


2

((5.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.82409255 × 1012 m-1 kg-1 s3


3

((5.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272837 × 1012 m-1 kg-1 s3


4

((5.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41204627 × 1012 m-1 kg-1 s3


5

((5.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12963702 × 1012 m-1 kg-1 s3


6

((5.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364183 × 1011 m-1 kg-1 s3


7

((5.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.06883586 × 1011 m-1 kg-1 s3


8

((5.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.06023137 × 1011 m-1 kg-1 s3


112

1

((5.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.69906964 × 1012 m-1 kg-1 s3


2

((5.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.84953482 × 1012 m-1 kg-1 s3


3

((5.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.89968988 × 1012 m-1 kg-1 s3


4

((5.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


5

((5.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13981393 × 1012 m-1 kg-1 s3


6

((5.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.49844941 × 1011 m-1 kg-1 s3


7

((5.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152806 × 1011 m-1 kg-1 s3


8

((5.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.12383705 × 1011 m-1 kg-1 s3


113

1

((5.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.7499542 × 1012 m-1 kg-1 s3


2

((5.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.8749771 × 1012 m-1 kg-1 s3


3

((5.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9166514 × 1012 m-1 kg-1 s3


4

((5.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43748855 × 1012 m-1 kg-1 s3


5

((5.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14999084 × 1012 m-1 kg-1 s3


6

((5.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.583257 × 1011 m-1 kg-1 s3


7

((5.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.21422028 × 1011 m-1 kg-1 s3


8

((5.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.18744275 × 1011 m-1 kg-1 s3


114

1

((5.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.80083874 × 1012 m-1 kg-1 s3


2

((5.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.90041937 × 1012 m-1 kg-1 s3


3

((5.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361291 × 1012 m-1 kg-1 s3


4

((5.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45020969 × 1012 m-1 kg-1 s3


5

((5.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16016775 × 1012 m-1 kg-1 s3


6

((5.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806457 × 1011 m-1 kg-1 s3


7

((5.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.28691249 × 1011 m-1 kg-1 s3


8

((5.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.25104843 × 1011 m-1 kg-1 s3


115

1

((5.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.8517233 × 1012 m-1 kg-1 s3


2

((5.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.92586165 × 1012 m-1 kg-1 s3


3

((5.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95057443 × 1012 m-1 kg-1 s3


4

((5.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.46293082 × 1012 m-1 kg-1 s3


5

((5.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


6

((5.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.75287216 × 1011 m-1 kg-1 s3


7

((5.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.35960471 × 1011 m-1 kg-1 s3


8

((5.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.31465412 × 1011 m-1 kg-1 s3


116

1

((5.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.90260784 × 1012 m-1 kg-1 s3


2

((5.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.95130392 × 1012 m-1 kg-1 s3


3

((5.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.96753595 × 1012 m-1 kg-1 s3


4

((5.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


5

((5.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18052157 × 1012 m-1 kg-1 s3


6

((5.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.83767974 × 1011 m-1 kg-1 s3


7

((5.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.43229692 × 1011 m-1 kg-1 s3


8

((5.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.3782598 × 1011 m-1 kg-1 s3


117

1

((5.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.9534924 × 1012 m-1 kg-1 s3


2

((5.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.9767462 × 1012 m-1 kg-1 s3


3

((5.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449747 × 1012 m-1 kg-1 s3


4

((5.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4883731 × 1012 m-1 kg-1 s3


5

((5.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19069848 × 1012 m-1 kg-1 s3


6

((5.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248733 × 1011 m-1 kg-1 s3


7

((5.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.50498914 × 1011 m-1 kg-1 s3


8

((5.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.4418655 × 1011 m-1 kg-1 s3


118

1

((5.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.00437694 × 1012 m-1 kg-1 s3


2

((5.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.00218847 × 1012 m-1 kg-1 s3


3

((5.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00145898 × 1012 m-1 kg-1 s3


4

((5.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50109424 × 1012 m-1 kg-1 s3


5

((5.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20087539 × 1012 m-1 kg-1 s3


6

((5.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00072949 × 1012 m-1 kg-1 s3


7

((5.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.57768135 × 1011 m-1 kg-1 s3


8

((5.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.50547118 × 1011 m-1 kg-1 s3


119

1

((5.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.0552615 × 1012 m-1 kg-1 s3


2

((5.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.02763075 × 1012 m-1 kg-1 s3


3

((5.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0184205 × 1012 m-1 kg-1 s3


4

((5.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.51381537 × 1012 m-1 kg-1 s3


5

((5.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2110523 × 1012 m-1 kg-1 s3


6

((5.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00921025 × 1012 m-1 kg-1 s3


7

((5.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1011 m-1 kg-1 s3


8

((5.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.56907687 × 1011 m-1 kg-1 s3


120

1

((5.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.10614604 × 1012 m-1 kg-1 s3


2

((5.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.05307302 × 1012 m-1 kg-1 s3


3

((5.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538201 × 1012 m-1 kg-1 s3


4

((5.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


5

((5.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


6

((5.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


7

((5.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.72306577 × 1011 m-1 kg-1 s3


8

((5.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268255 × 1011 m-1 kg-1 s3


121

1

((5.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.1570306 × 1012 m-1 kg-1 s3


2

((5.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.0785153 × 1012 m-1 kg-1 s3


3

((5.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.05234353 × 1012 m-1 kg-1 s3


4

((5.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53925765 × 1012 m-1 kg-1 s3


5

((5.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23140612 × 1012 m-1 kg-1 s3


6

((5.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02617177 × 1012 m-1 kg-1 s3


7

((5.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.795758 × 1011 m-1 kg-1 s3


8

((5.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.69628825 × 1011 m-1 kg-1 s3


122

1

((5.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.20791515 × 1012 m-1 kg-1 s3


2

((5.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.10395758 × 1012 m-1 kg-1 s3


3

((5.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.06930505 × 1012 m-1 kg-1 s3


4

((5.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55197879 × 1012 m-1 kg-1 s3


5

((5.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24158303 × 1012 m-1 kg-1 s3


6

((5.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03465253 × 1012 m-1 kg-1 s3


7

((5.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.86845022 × 1011 m-1 kg-1 s3


8

((5.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.75989394 × 1011 m-1 kg-1 s3


123

1

((5.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.2587997 × 1012 m-1 kg-1 s3


2

((5.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.12939985 × 1012 m-1 kg-1 s3


3

((5.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.08626657 × 1012 m-1 kg-1 s3


4

((5.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56469992 × 1012 m-1 kg-1 s3


5

((5.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25175994 × 1012 m-1 kg-1 s3


6

((5.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04313328 × 1012 m-1 kg-1 s3


7

((5.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.94114242 × 1011 m-1 kg-1 s3


8

((5.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.82349962 × 1011 m-1 kg-1 s3


124

1

((5.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.30968425 × 1012 m-1 kg-1 s3


2

((5.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.15484213 × 1012 m-1 kg-1 s3


3

((5.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.10322808 × 1012 m-1 kg-1 s3


4

((5.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


5

((5.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26193685 × 1012 m-1 kg-1 s3


6

((5.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05161404 × 1012 m-1 kg-1 s3


7

((5.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.01383465 × 1011 m-1 kg-1 s3


8

((5.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.88710532 × 1011 m-1 kg-1 s3


125

1

((5.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.3605688 × 1012 m-1 kg-1 s3


2

((5.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.1802844 × 1012 m-1 kg-1 s3


3

((5.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.1201896 × 1012 m-1 kg-1 s3


4

((5.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5901422 × 1012 m-1 kg-1 s3


5

((5.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


6

((5.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0600948 × 1012 m-1 kg-1 s3


7

((5.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.08652685 × 1011 m-1 kg-1 s3


8

((5.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.950711 × 1011 m-1 kg-1 s3


126

1

((5.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.41145335 × 1012 m-1 kg-1 s3


2

((5.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.20572668 × 1012 m-1 kg-1 s3


3

((5.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.13715112 × 1012 m-1 kg-1 s3


4

((5.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60286334 × 1012 m-1 kg-1 s3


5

((5.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28229067 × 1012 m-1 kg-1 s3


6

((5.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


7

((5.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921908 × 1011 m-1 kg-1 s3


8

((5.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.01431669 × 1011 m-1 kg-1 s3


127

1

((5.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.4623379 × 1012 m-1 kg-1 s3


2

((5.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.23116895 × 1012 m-1 kg-1 s3


3

((5.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.15411263 × 1012 m-1 kg-1 s3


4

((5.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.61558447 × 1012 m-1 kg-1 s3


5

((5.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29246758 × 1012 m-1 kg-1 s3


6

((5.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07705632 × 1012 m-1 kg-1 s3


7

((5.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.23191128 × 1011 m-1 kg-1 s3


8

((5.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.07792237 × 1011 m-1 kg-1 s3


128

1

((5.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.51322245 × 1012 m-1 kg-1 s3


2

((5.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.25661123 × 1012 m-1 kg-1 s3


3

((5.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.17107415 × 1012 m-1 kg-1 s3


4

((5.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


5

((5.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30264449 × 1012 m-1 kg-1 s3


6

((5.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08553708 × 1012 m-1 kg-1 s3


7

((5.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.3046035 × 1011 m-1 kg-1 s3


8

5.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152807 × 1011 m-1 kg-1 s3


129

1

((5.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.564107 × 1012 m-1 kg-1 s3


2

((5.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.2820535 × 1012 m-1 kg-1 s3


3

((5.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.18803567 × 1012 m-1 kg-1 s3


4

((5.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64102675 × 1012 m-1 kg-1 s3


5

((5.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3128214 × 1012 m-1 kg-1 s3


6

((5.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09401783 × 1012 m-1 kg-1 s3


7

((5.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.37729571 × 1011 m-1 kg-1 s3


8

((5.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.20513375 × 1011 m-1 kg-1 s3


130

1

((5.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.61499155 × 1012 m-1 kg-1 s3


2

((5.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.30749578 × 1012 m-1 kg-1 s3


3

((5.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.20499718 × 1012 m-1 kg-1 s3


4

((5.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65374789 × 1012 m-1 kg-1 s3


5

((5.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


6

((5.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10249859 × 1012 m-1 kg-1 s3


7

((5.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.44998793 × 1011 m-1 kg-1 s3


8

((5.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.26873944 × 1011 m-1 kg-1 s3


131

1

((5.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.6658761 × 1012 m-1 kg-1 s3


2

((5.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.33293805 × 1012 m-1 kg-1 s3


3

((5.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.2219587 × 1012 m-1 kg-1 s3


4

((5.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66646902 × 1012 m-1 kg-1 s3


5

((5.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33317522 × 1012 m-1 kg-1 s3


6

((5.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11097935 × 1012 m-1 kg-1 s3


7

((5.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.52268014 × 1011 m-1 kg-1 s3


8

((5.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.33234512 × 1011 m-1 kg-1 s3


132

1

((6.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.71676065 × 1012 m-1 kg-1 s3


2

((6.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.35838033 × 1012 m-1 kg-1 s3


3

((6.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.23892022 × 1012 m-1 kg-1 s3


4

((6.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


5

((6.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34335213 × 1012 m-1 kg-1 s3


6

((6.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


7

((6.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.59537236 × 1011 m-1 kg-1 s3


8

((6.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.39595081 × 1011 m-1 kg-1 s3


133

1

((6.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.76764521 × 1012 m-1 kg-1 s3


2

((6.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.3838226 × 1012 m-1 kg-1 s3


3

((6.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2 255 881 735 813 m-1 kg-1 s3


4

((6.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6919113 × 1012 m-1 kg-1 s3


5

((6.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35352904 × 1012 m-1 kg-1 s3


6

((6.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12794087 × 1012 m-1 kg-1 s3


7

((6.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1011 m-1 kg-1 s3


8

((6.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.45955651 × 1011 m-1 kg-1 s3


134

1

((6.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.81852975 × 1012 m-1 kg-1 s3


2

((6.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.40926488 × 1012 m-1 kg-1 s3


3

((6.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.27284325 × 1012 m-1 kg-1 s3


4

((6.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.70463244 × 1012 m-1 kg-1 s3


5

((6.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36370595 × 1012 m-1 kg-1 s3


6

((6.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13642163 × 1012 m-1 kg-1 s3


7

((6.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.74075679 × 1011 m-1 kg-1 s3


8

((6.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.52316219 × 1011 m-1 kg-1 s3


135

1

((6.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.86941431 × 1012 m-1 kg-1 s3


2

((6.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.43470715 × 1012 m-1 kg-1 s3


3

((6.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.28980477 × 1012 m-1 kg-1 s3


4

((6.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.71735358 × 1012 m-1 kg-1 s3


5

((6.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


6

((6.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14490238 × 1012 m-1 kg-1 s3


7

((6.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.81344901 × 1011 m-1 kg-1 s3


8

((6.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.58676788 × 1011 m-1 kg-1 s3


136

1

((6.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.92029885 × 1012 m-1 kg-1 s3


2

((6.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3 460 149 425 748 m-1 kg-1 s3


3

((6.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2 306 766 283 832 m-1 kg-1 s3


4

((6.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1 730 074 712 874 m-1 kg-1 s3


5

((6.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38405977 × 1012 m-1 kg-1 s3


6

((6.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1 153 383 141 916 m-1 kg-1 s3


7

((6.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.88614122 × 1011 m-1 kg-1 s3


8

((6.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =865 037 356 437 m-1 kg-1 s3


137

1

((6.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.97118341 × 1012 m-1 kg-1 s3


2

((6.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.4855917 × 1012 m-1 kg-1 s3


3

((6.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.3237278 × 1012 m-1 kg-1 s3


4

((6.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74279585 × 1012 m-1 kg-1 s3


5

((6.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39423668 × 1012 m-1 kg-1 s3


6

((6.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1618639 × 1012 m-1 kg-1 s3


7

((6.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.95883344 × 1011 m-1 kg-1 s3


8

((6.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.71397926 × 1011 m-1 kg-1 s3


138

1

((6.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.02206795 × 1012 m-1 kg-1 s3


2

((6.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.51103398 × 1012 m-1 kg-1 s3


3

((6.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.34068932 × 1012 m-1 kg-1 s3


4

((6.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.75551699 × 1012 m-1 kg-1 s3


5

((6.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.40441359 × 1012 m-1 kg-1 s3


6

((6.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


7

((6.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00315256 × 1012 m-1 kg-1 s3


8

((6.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.77758494 × 1011 m-1 kg-1 s3


139

1

((6.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.07295251 × 1012 m-1 kg-1 s3


2

((6.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.53647625 × 1012 m-1 kg-1 s3


3

((6.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.35765084 × 1012 m-1 kg-1 s3


4

((6.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76823813 × 1012 m-1 kg-1 s3


5

((6.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4145905 × 1012 m-1 kg-1 s3


6

((6.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17882542 × 1012 m-1 kg-1 s3


7

((6.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01042179 × 1012 m-1 kg-1 s3


8

((6.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.84119063 × 1011 m-1 kg-1 s3


140

1

((6.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.12383705 × 1012 m-1 kg-1 s3


2

((6.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.56191853 × 1012 m-1 kg-1 s3


3

((6.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.37461235 × 1012 m-1 kg-1 s3


4

((6.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


5

((6.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


6

((6.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18730618 × 1012 m-1 kg-1 s3


7

((6.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


8

((6.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1011 m-1 kg-1 s3


141

1

((6.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.17472161 × 1012 m-1 kg-1 s3


2

((6.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.5873608 × 1012 m-1 kg-1 s3


3

((6.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.39157387 × 1012 m-1 kg-1 s3


4

((6.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7936804 × 1012 m-1 kg-1 s3


5

((6.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43494432 × 1012 m-1 kg-1 s3


6

((6.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19578693 × 1012 m-1 kg-1 s3


7

((6.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02496023 × 1012 m-1 kg-1 s3


8

((6.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.96840201 × 1011 m-1 kg-1 s3


142


1

((6.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.22560615 × 1012 m-1 kg-1 s3


2

((6.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.61280308 × 1012 m-1 kg-1 s3


3

((6.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.40853538 × 1012 m-1 kg-1 s3


4

((6.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.80640154 × 1012 m-1 kg-1 s3


5

((6.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44512123 × 1012 m-1 kg-1 s3


6

((6.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20426769 × 1012 m-1 kg-1 s3


7

((6.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03222945 × 1012 m-1 kg-1 s3


8

((6.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.03200769 × 1011 m-1 kg-1 s3


143

1

((6.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.27649071 × 1012 m-1 kg-1 s3


2

((6.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.63824535 × 1012 m-1 kg-1 s3


3

((6.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.4254969 × 1012 m-1 kg-1 s3


4

((6.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.81912268 × 1012 m-1 kg-1 s3


5

((6.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45529814 × 1012 m-1 kg-1 s3


6

((6.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21274845 × 1012 m-1 kg-1 s3


7

((6.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03949867 × 1012 m-1 kg-1 s3


8

((6.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.09561338 × 1011 m-1 kg-1 s3


144

1

((6.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.32737526 × 1012 m-1 kg-1 s3


2

((6.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.66368763 × 1012 m-1 kg-1 s3


3

((6.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.44245842 × 1012 m-1 kg-1 s3


4

((6.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184382 × 1012 m-1 kg-1 s3


5

((6.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.46547505 × 1012 m-1 kg-1 s3


6

((6.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


7

((6.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04676789 × 1012 m-1 kg-1 s3


8

((6.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921908 × 1011 m-1 kg-1 s3


145

1

((6.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.37825981 × 1012 m-1 kg-1 s3


2

((6.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.6891299 × 1012 m-1 kg-1 s3


3

((6.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.45941994 × 1012 m-1 kg-1 s3


4

((6.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84456495 × 1012 m-1 kg-1 s3


5

((6.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


6

((6.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22970997 × 1012 m-1 kg-1 s3


7

((6.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05403712 × 1012 m-1 kg-1 s3


8

((6.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.22282476 × 1011 m-1 kg-1 s3


146

1

((6.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.42914436 × 1012 m-1 kg-1 s3


2

((6.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.71457218 × 1012 m-1 kg-1 s3


3

((6.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.47638145 × 1012 m-1 kg-1 s3


4

((6.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.85728609 × 1012 m-1 kg-1 s3


5

((6.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.48582887 × 1012 m-1 kg-1 s3


6

((6.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23819073 × 1012 m-1 kg-1 s3


7

((6.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06130634 × 1012 m-1 kg-1 s3


8

((6.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.28643045 × 1011 m-1 kg-1 s3


147

1

((6.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48002891 × 1012 m-1 kg-1 s3


2

((6.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48002891 × 1012 m-1 kg-1 s3


3

((6.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.49334297 × 1012 m-1 kg-1 s3


4

((6.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.87000723 × 1012 m-1 kg-1 s3


5

((6.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.49600578 × 1012 m-1 kg-1 s3


6

((6.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24667148 × 1012 m-1 kg-1 s3


7

((6.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


8

((6.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.35003613 × 1011 m-1 kg-1 s3


148

1

((6.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.53091346 × 1012 m-1 kg-1 s3


2

((6.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.76545673 × 1012 m-1 kg-1 s3


3

((6.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.51030449 × 1012 m-1 kg-1 s3


4

((6.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272837 × 1012 m-1 kg-1 s3


5

((6.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50618269 × 1012 m-1 kg-1 s3


6

((6.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25515224 × 1012 m-1 kg-1 s3


7

((6.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07584478 × 1012 m-1 kg-1 s3


8

((6.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364183 × 1011 m-1 kg-1 s3

It’s about here that I realized I should be using the Planck lengths so if you want approximately much closer data /by 9.223e+18
149

1

((6.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.58179801 × 1012 m-1 kg-1 s3


2

((6.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.790899 × 1012 m-1 kg-1 s3


3

((6.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.527266 × 1012 m-1 kg-1 s3


4

((6.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8954495 × 1012 m-1 kg-1 s3


5

((6.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5163596 × 1012 m-1 kg-1 s3


6

((6.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.263633 × 1012 m-1 kg-1 s3


7

((6.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.083114 × 1012 m-1 kg-1 s3


8

((6.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.47724751 × 1011 m-1 kg-1 s3


150: Somewhere between here and 151 pm it starts to increase the connection’s gains. Probably along one or two Planck length(s).

1

((6.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268256 × 1012 m-1 kg-1 s3


2

((6.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.81634128 × 1012 m-1 kg-1 s3


3

((6.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.54422752 × 1012 m-1 kg-1 s3


4

((6.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.90817064 × 1012 m-1 kg-1 s3


5

((6.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


6

((6.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


7

((6.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09038322 × 1012 m-1 kg-1 s3


8

((6.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.5408532 × 1011 m-1 kg-1 s3


151

1

((6.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.68356711 × 1012 m-1 kg-1 s3


2

((6.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.84178355 × 1012 m-1 kg-1 s3


3

((6.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.56118904 × 1012 m-1 kg-1 s3


4

((6.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.92089178 × 1012 m-1 kg-1 s3


5

((6.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53671342 × 1012 m-1 kg-1 s3


6

((6.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28059452 × 1012 m-1 kg-1 s3


7

((6.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09765244 × 1012 m-1 kg-1 s3


8

((6.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.60445888 × 1011 m-1 kg-1 s3


152

1

((6.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.73445166 × 1012 m-1 kg-1 s3


2

((6.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.86722583 × 1012 m-1 kg-1 s3


3

((6.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.57815055 × 1012 m-1 kg-1 s3


4

((6.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361292 × 1012 m-1 kg-1 s3


5

((6.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.54689033 × 1012 m-1 kg-1 s3


6

((6.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28907528 × 1012 m-1 kg-1 s3


7

((6.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10492167 × 1012 m-1 kg-1 s3


8

((6.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1011 m-1 kg-1 s3


153

1

((6.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.78533621 × 1012 m-1 kg-1 s3


2

((6.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.8926681 × 1012 m-1 kg-1 s3


3

((6.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.59511207 × 1012 m-1 kg-1 s3


4

((6.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.94633405 × 1012 m-1 kg-1 s3


5

((6.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55706724 × 1012 m-1 kg-1 s3


6

((6.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29755603 × 1012 m-1 kg-1 s3


7

((6.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11219089 × 1012 m-1 kg-1 s3


8

((6.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.73167026 × 1011 m-1 kg-1 s3


154

1

((7.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.83622076 × 1012 m-1 kg-1 s3


2

((7.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.91811038 × 1012 m-1 kg-1 s3


3

((7.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.61207359 × 1012 m-1 kg-1 s3


4

((7.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95905519 × 1012 m-1 kg-1 s3


5

((7.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56724415 × 1012 m-1 kg-1 s3


6

((7.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30603679 × 1012 m-1 kg-1 s3


7

((7.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


8

((7.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.79527595 × 1011 m-1 kg-1 s3


155

1

((7.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.88710532 × 1012 m-1 kg-1 s3


2

((7.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.94355266 × 1012 m-1 kg-1 s3


3

((7.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.62903511 × 1012 m-1 kg-1 s3


4

((7.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.97177633 × 1012 m-1 kg-1 s3


5

((7.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


6

((7.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31451755 × 1012 m-1 kg-1 s3


7

((7.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12672933 × 1012 m-1 kg-1 s3


8

((7.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.85888165 × 1011 m-1 kg-1 s3


156

1

((7.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.93798986 × 1012 m-1 kg-1 s3


2

((7.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.96899493 × 1012 m-1 kg-1 s3


3

((7.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.64599662 × 1012 m-1 kg-1 s3


4

((7.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449747 × 1012 m-1 kg-1 s3


5

((7.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.58759797 × 1012 m-1 kg-1 s3


6

((7.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


7

((7.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13399855 × 1012 m-1 kg-1 s3


8

((7.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248733 × 1011 m-1 kg-1 s3


157

1

((7.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.98887442 × 1012 m-1 kg-1 s3


2

((7.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.99443721 × 1012 m-1 kg-1 s3


3

((7.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.66295814 × 1012 m-1 kg-1 s3


4

((7.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9972186 × 1012 m-1 kg-1 s3


5

((7.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.59777488 × 1012 m-1 kg-1 s3


6

((7.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33147907 × 1012 m-1 kg-1 s3


7

((7.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14126777 × 1012 m-1 kg-1 s3


8

((7.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.98609302 × 1011 m-1 kg-1 s3


158

1

((7.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.03975896 × 1012 m-1 kg-1 s3


2

((7.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.01987948 × 1012 m-1 kg-1 s3


3

((7.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.67991965 × 1012 m-1 kg-1 s3


4

((7.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00993974 × 1012 m-1 kg-1 s3


5

((7.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60795179 × 1012 m-1 kg-1 s3


6

((7.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33995983 × 1012 m-1 kg-1 s3


7

((7.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14853699 × 1012 m-1 kg-1 s3


8

((7.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00496987 × 1012 m-1 kg-1 s3


159

1

((7.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.09064352 × 1012 m-1 kg-1 s3


2

((7.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.04532176 × 1012 m-1 kg-1 s3


3

((7.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.69688117 × 1012 m-1 kg-1 s3


4

((7.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.02266088 × 1012 m-1 kg-1 s3


5

((7.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6181287 × 1012 m-1 kg-1 s3


6

((7.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34844059 × 1012 m-1 kg-1 s3


7

((7.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15580622 × 1012 m-1 kg-1 s3


8

((7.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01133044 × 1012 m-1 kg-1 s3


160

1

((7.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152806 × 1012 m-1 kg-1 s3


2

((7.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.07076403 × 1012 m-1 kg-1 s3


3

((7.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.71384269 × 1012 m-1 kg-1 s3


4

((7.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538201 × 1012 m-1 kg-1 s3


5

((7.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


6

((7.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35692134 × 1012 m-1 kg-1 s3


7

((7.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16307544 × 1012 m-1 kg-1 s3


8

((7.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


161

1

((7.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.19241262 × 1012 m-1 kg-1 s3


2

((7.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.09620631 × 1012 m-1 kg-1 s3


3

((7.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.73080421 × 1012 m-1 kg-1 s3


4

((7.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.04810315 × 1012 m-1 kg-1 s3


5

((7.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.63848252 × 1012 m-1 kg-1 s3


6

((7.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3654021 × 1012 m-1 kg-1 s3


7

((7.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


8

((7.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02405158 × 1012 m-1 kg-1 s3


162

1

((7.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.24329716 × 1012 m-1 kg-1 s3


2

((7.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.12164858 × 1012 m-1 kg-1 s3


3

((7.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.74776572 × 1012 m-1 kg-1 s3


4

((7.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.06082429 × 1012 m-1 kg-1 s3


5

((7.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64865943 × 1012 m-1 kg-1 s3


6

((7.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


7

((7.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17761388 × 1012 m-1 kg-1 s3


8

((7.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03041214 × 1012 m-1 kg-1 s3


163

1

((7.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.29418172 × 1012 m-1 kg-1 s3


2

((7.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.14709086 × 1012 m-1 kg-1 s3


3

((7.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.76472724 × 1012 m-1 kg-1 s3


4

((7.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.07354543 × 1012 m-1 kg-1 s3


5

((7.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65883634 × 1012 m-1 kg-1 s3


6

((7.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38236362 × 1012 m-1 kg-1 s3


7

((7.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1848831 × 1012 m-1 kg-1 s3


8

((7.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03677271 × 1012 m-1 kg-1 s3


164

1

((7.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.34506626 × 1012 m-1 kg-1 s3


2

((7.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.17253313 × 1012 m-1 kg-1 s3


3

((7.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.78168875 × 1012 m-1 kg-1 s3


4

((7.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.08626656 × 1012 m-1 kg-1 s3


5

((7.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66901325 × 1012 m-1 kg-1 s3


6

((7.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39084438 × 1012 m-1 kg-1 s3


7

((7.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19215232 × 1012 m-1 kg-1 s3


8

((7.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04313328 × 1012 m-1 kg-1 s3


165

1

((7.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.39595081 × 1012 m-1 kg-1 s3


2

((7.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.19797541 × 1012 m-1 kg-1 s3


3

((7.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.79865027 × 1012 m-1 kg-1 s3


4

((7.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0989877 × 1012 m-1 kg-1 s3


5

((7.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


6

((7.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39932514 × 1012 m-1 kg-1 s3


7

((7.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19942154 × 1012 m-1 kg-1 s3


8

((7.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04949385 × 1012 m-1 kg-1 s3


166

1

((7.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.44683537 × 1012 m-1 kg-1 s3


2

((7.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.22341769 × 1012 m-1 kg-1 s3


3

((7.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.81561179 × 1012 m-1 kg-1 s3


4

((7.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.11170884 × 1012 m-1 kg-1 s3


5

((7.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.68936707 × 1012 m-1 kg-1 s3


6

((7.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4078059 × 1012 m-1 kg-1 s3


7

((7.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20669077 × 1012 m-1 kg-1 s3


8

((7.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05585442 × 1012 m-1 kg-1 s3


167

1

((7.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.49771991 × 1012 m-1 kg-1 s3


2

((7.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.24885996 × 1012 m-1 kg-1 s3


3

((7.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.8325733 × 1012 m-1 kg-1 s3


4

((7.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.12442998 × 1012 m-1 kg-1 s3


5

((7.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.69954398 × 1012 m-1 kg-1 s3


6

((7.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41628665 × 1012 m-1 kg-1 s3


7

((7.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21395999 × 1012 m-1 kg-1 s3


8

((7.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06221499 × 1012 m-1 kg-1 s3


168

1

((7.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.54860447 × 1012 m-1 kg-1 s3


2

((7.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.27430224 × 1012 m-1 kg-1 s3


3

((7.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.84953482 × 1012 m-1 kg-1 s3


4

((7.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.13715112 × 1012 m-1 kg-1 s3


5

((7.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.70972089 × 1012 m-1 kg-1 s3


6

((7.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


7

((7.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


8

((7.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


169

1

((7.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.59948901 × 1012 m-1 kg-1 s3


2

((7.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.29974451 × 1012 m-1 kg-1 s3


3

((7.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.86649634 × 1012 m-1 kg-1 s3


4

((7.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.14987225 × 1012 m-1 kg-1 s3


5

((7.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7198978 × 1012 m-1 kg-1 s3


6

((7.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43324817 × 1012 m-1 kg-1 s3


7

((7.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22849843 × 1012 m-1 kg-1 s3


8

((7.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07493613 × 1012 m-1 kg-1 s3


170

1

((7.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1012 m-1 kg-1 s3


2

((7.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.32518678 × 1012 m-1 kg-1 s3


3

((7.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.88345786 × 1012 m-1 kg-1 s3


4

((7.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.16259339 × 1012 m-1 kg-1 s3


5

((7.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.73007471 × 1012 m-1 kg-1 s3


6

((7.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44172893 × 1012 m-1 kg-1 s3


7

((7.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23576765 × 1012 m-1 kg-1 s3


8

((7.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0812967 × 1012 m-1 kg-1 s3


171

1

((7.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.70125811 × 1012 m-1 kg-1 s3


2

((7.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.35062906 × 1012 m-1 kg-1 s3


3

((7.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.90041937 × 1012 m-1 kg-1 s3


4

((7.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.17531453 × 1012 m-1 kg-1 s3


5

((7.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74025162 × 1012 m-1 kg-1 s3


6

((7.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45020969 × 1012 m-1 kg-1 s3


7

((7.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24303687 × 1012 m-1 kg-1 s3


8

((7.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08765726 × 1012 m-1 kg-1 s3


172

1

((7.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.75214267 × 1012 m-1 kg-1 s3


2

((7.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.37607133 × 1012 m-1 kg-1 s3


3

((7.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.91738089 × 1012 m-1 kg-1 s3


4

((7.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.18803567 × 1012 m-1 kg-1 s3


5

((7.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.75042853 × 1012 m-1 kg-1 s3


6

((7.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45869044 × 1012 m-1 kg-1 s3


7

((7.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2503061 × 1012 m-1 kg-1 s3


8

((7.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09401783 × 1012 m-1 kg-1 s3


173

1

((7.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.80302721 × 1012 m-1 kg-1 s3


2

((7.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.40151361 × 1012 m-1 kg-1 s3


3

((7.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.9343424 × 1012 m-1 kg-1 s3


4

((7.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.2007568 × 1012 m-1 kg-1 s3


5

((7.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76060544 × 1012 m-1 kg-1 s3


6

((7.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4671712 × 1012 m-1 kg-1 s3


7

((7.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25757532 × 1012 m-1 kg-1 s3


8

((7.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1003784 × 1012 m-1 kg-1 s3


174

1

((7.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.85391177 × 1012 m-1 kg-1 s3


2

((7.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.42695588 × 1012 m-1 kg-1 s3


3

((7.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.95130392 × 1012 m-1 kg-1 s3


4

((7.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.21347794 × 1012 m-1 kg-1 s3


5

((7.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.77078235 × 1012 m-1 kg-1 s3


6

((7.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


7

((7.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26484454 × 1012 m-1 kg-1 s3


8

((7.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10673897 × 1012 m-1 kg-1 s3


175

1

((7.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1012 m-1 kg-1 s3


2

((7.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.45239816 × 1012 m-1 kg-1 s3


3

((7.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.96826544 × 1012 m-1 kg-1 s3


4

((7.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.22619908 × 1012 m-1 kg-1 s3


5

((7.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


6

((7.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.48413272 × 1012 m-1 kg-1 s3


7

((7.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


8

((7.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11309954 × 1012 m-1 kg-1 s3


176

1

((8.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.95568087 × 1012 m-1 kg-1 s3


2

((8.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.47784043 × 1012 m-1 kg-1 s3


3

((8.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.98522696 × 1012 m-1 kg-1 s3


4

((8.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.23892022 × 1012 m-1 kg-1 s3


5

((8.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.79113617 × 1012 m-1 kg-1 s3


6

((8.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.49261348 × 1012 m-1 kg-1 s3


7

((8.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27938298 × 1012 m-1 kg-1 s3


8

((8.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


177

1

((8.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.00656542 × 1012 m-1 kg-1 s3


2

((8.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.50328271 × 1012 m-1 kg-1 s3


3

((8.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.00218847 × 1012 m-1 kg-1 s3


4

((8.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.25164136 × 1012 m-1 kg-1 s3


5

((8.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.80131308 × 1012 m-1 kg-1 s3


6

((8.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50109424 × 1012 m-1 kg-1 s3


7

((8.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2866522 × 1012 m-1 kg-1 s3


8

((8.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12582068 × 1012 m-1 kg-1 s3


178

1

((8.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.05744997 × 1012 m-1 kg-1 s3


2

((8.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.52872498 × 1012 m-1 kg-1 s3


3

((8.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.01914999 × 1012 m-1 kg-1 s3


4

((8.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.26436249 × 1012 m-1 kg-1 s3


5

((8.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.81148999 × 1012 m-1 kg-1 s3


6

((8.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50957499 × 1012 m-1 kg-1 s3


7

((8.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29392142 × 1012 m-1 kg-1 s3


8

((8.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13218125 × 1012 m-1 kg-1 s3


179

1

((8.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.10833452 × 1012 m-1 kg-1 s3


2

((8.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.55416726 × 1012 m-1 kg-1 s3


3

((8.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.03611151 × 1012 m-1 kg-1 s3


4

((8.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.27708363 × 1012 m-1 kg-1 s3


5

((8.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8216669 × 1012 m-1 kg-1 s3


6

((8.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.51805575 × 1012 m-1 kg-1 s3


7

((8.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30119065 × 1012 m-1 kg-1 s3


8

((8.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13854182 × 1012 m-1 kg-1 s3


180

1

((8.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921907 × 1012 m-1 kg-1 s3


2

((8.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.57960953 × 1012 m-1 kg-1 s3


3

((8.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.05307302 × 1012 m-1 kg-1 s3


4

((8.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.28980477 × 1012 m-1 kg-1 s3


5

((8.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184381 × 1012 m-1 kg-1 s3


6

((8.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


7

((8.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30845987 × 1012 m-1 kg-1 s3


8

((8.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14490238 × 1012 m-1 kg-1 s3


181

1

((8.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.21010362 × 1012 m-1 kg-1 s3


2

((8.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.60505181 × 1012 m-1 kg-1 s3


3

((8.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.07003454 × 1012 m-1 kg-1 s3


4

((8.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.30252591 × 1012 m-1 kg-1 s3


5

((8.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84202072 × 1012 m-1 kg-1 s3


6

((8.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53501727 × 1012 m-1 kg-1 s3


7

((8.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31572909 × 1012 m-1 kg-1 s3


8

((8.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15126295 × 1012 m-1 kg-1 s3


182

1

((8.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.26098817 × 1012 m-1 kg-1 s3


2

((8.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.63049408 × 1012 m-1 kg-1 s3


3

((8.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.08699606 × 1012 m-1 kg-1 s3


4

((8.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.31524704 × 1012 m-1 kg-1 s3


5

((8.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.85219763 × 1012 m-1 kg-1 s3


6

((8.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.54349803 × 1012 m-1 kg-1 s3


7

((8.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


8

((8.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15762352 × 1012 m-1 kg-1 s3


183

1

((8.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.31187272 × 1012 m-1 kg-1 s3


2

((8.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.65593636 × 1012 m-1 kg-1 s3


3

((8.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.10395757 × 1012 m-1 kg-1 s3


4

((8.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.32796818 × 1012 m-1 kg-1 s3


5

((8.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.86237454 × 1012 m-1 kg-1 s3


6

((8.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55197879 × 1012 m-1 kg-1 s3


7

((8.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33026753 × 1012 m-1 kg-1 s3


8

((8.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16398409 × 1012 m-1 kg-1 s3


184

1

((8.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.36275727 × 1012 m-1 kg-1 s3


2

((8.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.68137863 × 1012 m-1 kg-1 s3


3

((8.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.12091909 × 1012 m-1 kg-1 s3


4

((8.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.34068932 × 1012 m-1 kg-1 s3


5

((8.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.87255145 × 1012 m-1 kg-1 s3


6

((8.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56045954 × 1012 m-1 kg-1 s3


7

((8.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33753675 × 1012 m-1 kg-1 s3


8

((8.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


185

1

((8.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364182 × 1012 m-1 kg-1 s3


2

((8.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.70682091 × 1012 m-1 kg-1 s3


3

((8.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.13788061 × 1012 m-1 kg-1 s3


4

((8.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.35341046 × 1012 m-1 kg-1 s3


5

((8.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272836 × 1012 m-1 kg-1 s3


6

((8.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5689403 × 1012 m-1 kg-1 s3


7

((8.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34480597 × 1012 m-1 kg-1 s3


8

((8.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17670523 × 1012 m-1 kg-1 s3


186

1

((8.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.46452637 × 1012 m-1 kg-1 s3


2

((8.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.73226318 × 1012 m-1 kg-1 s3


3

((8.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.15484212 × 1012 m-1 kg-1 s3


4

((8.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.36613159 × 1012 m-1 kg-1 s3


5

((8.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.89290527 × 1012 m-1 kg-1 s3


6

((8.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


7

((8.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3520752 × 1012 m-1 kg-1 s3


8

((8.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1830658 × 1012 m-1 kg-1 s3


187

1

((8.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.51541092 × 1012 m-1 kg-1 s3


2

((8.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.75770546 × 1012 m-1 kg-1 s3


3

((8.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.17180364 × 1012 m-1 kg-1 s3


4

((8.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.37885273 × 1012 m-1 kg-1 s3


5

((8.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.90308218 × 1012 m-1 kg-1 s3


6

((8.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.58590182 × 1012 m-1 kg-1 s3


7

((8.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35934442 × 1012 m-1 kg-1 s3


8

((8.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18942637 × 1012 m-1 kg-1 s3


188

1

((8.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.56629548 × 1012 m-1 kg-1 s3


2

((8.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.78314774 × 1012 m-1 kg-1 s3


3

((8.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.18876516 × 1012 m-1 kg-1 s3


4

((8.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.39157387 × 1012 m-1 kg-1 s3


5

((8.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9132591 × 1012 m-1 kg-1 s3


6

((8.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.59438258 × 1012 m-1 kg-1 s3


7

((8.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36661364 × 1012 m-1 kg-1 s3


8

((8.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19578693 × 1012 m-1 kg-1 s3


189

1

((8.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.61718002 × 1012 m-1 kg-1 s3


2

((8.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.80859001 × 1012 m-1 kg-1 s3


3

((8.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.20572667 × 1012 m-1 kg-1 s3


4

((8.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.40429501 × 1012 m-1 kg-1 s3


5

((8.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.923436 × 1012 m-1 kg-1 s3


6

((8.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60286334 × 1012 m-1 kg-1 s3


7

((8.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


8

((8.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2021475 × 1012 m-1 kg-1 s3


190

1

((8.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1012 m-1 kg-1 s3


2

((8.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.83403229 × 1012 m-1 kg-1 s3


3

((8.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.22268819 × 1012 m-1 kg-1 s3


4

((8.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.41701614 × 1012 m-1 kg-1 s3


5

((8.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361292 × 1012 m-1 kg-1 s3


6

((8.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6113441 × 1012 m-1 kg-1 s3


7

((8.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38115208 × 1012 m-1 kg-1 s3


8

((8.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20850807 × 1012 m-1 kg-1 s3


191

1

((8.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.71894912 × 1012 m-1 kg-1 s3


2

((8.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.85947456 × 1012 m-1 kg-1 s3


3

((8.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.23964971 × 1012 m-1 kg-1 s3


4

((8.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.42973728 × 1012 m-1 kg-1 s3


5

((8.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.94378982 × 1012 m-1 kg-1 s3


6

((8.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.61982485 × 1012 m-1 kg-1 s3


7

((8.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3884213 × 1012 m-1 kg-1 s3


8

((8.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21486864 × 1012 m-1 kg-1 s3


192

1

((8.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.76983368 × 1012 m-1 kg-1 s3


2

((8.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.88491684 × 1012 m-1 kg-1 s3


3

((8.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.25661123 × 1012 m-1 kg-1 s3


4

((8.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.44245842 × 1012 m-1 kg-1 s3


5

((8.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95396674 × 1012 m-1 kg-1 s3


6

((8.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


7

((8.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39569053 × 1012 m-1 kg-1 s3


8

((8.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


193

1

((8.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.82071822 × 1012 m-1 kg-1 s3


2

((8.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.91035911 × 1012 m-1 kg-1 s3


3

((8.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.27357274 × 1012 m-1 kg-1 s3


4

((8.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.45517956 × 1012 m-1 kg-1 s3


5

((8.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.96414364 × 1012 m-1 kg-1 s3


6

((8.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.63678637 × 1012 m-1 kg-1 s3


7

((8.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.40295975 × 1012 m-1 kg-1 s3


8

((8.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22758978 × 1012 m-1 kg-1 s3


194

1

((8.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.87160278 × 1012 m-1 kg-1 s3


2

((8.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.93580139 × 1012 m-1 kg-1 s3


3

((8.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.29053426 × 1012 m-1 kg-1 s3


4

((8.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.46790069 × 1012 m-1 kg-1 s3


5

((8.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.97432056 × 1012 m-1 kg-1 s3


6

((8.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64526713 × 1012 m-1 kg-1 s3


7

((8.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41022897 × 1012 m-1 kg-1 s3


8

((8.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23395035 × 1012 m-1 kg-1 s3


195

1

((8.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248732 × 1012 m-1 kg-1 s3


2

((8.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.96124366 × 1012 m-1 kg-1 s3


3

((8.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.30749577 × 1012 m-1 kg-1 s3


4

((8.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.48062183 × 1012 m-1 kg-1 s3


5

((8.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449746 × 1012 m-1 kg-1 s3


6

((8.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65374789 × 1012 m-1 kg-1 s3


7

((8.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41749819 × 1012 m-1 kg-1 s3


8

((8.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24031092 × 1012 m-1 kg-1 s3


196

1

((8.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.97337188 × 1012 m-1 kg-1 s3


2

((8.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.98668594 × 1012 m-1 kg-1 s3


3

((8.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.32445729 × 1012 m-1 kg-1 s3


4

((8.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.49334297 × 1012 m-1 kg-1 s3


5

((8.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.99467438 × 1012 m-1 kg-1 s3


6

((8.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66222865 × 1012 m-1 kg-1 s3


7

((8.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


8

((8.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24667148 × 1012 m-1 kg-1 s3


197

1

((8.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00242564 × 1013 m-1 kg-1 s3


2

((8.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.01212821 × 1012 m-1 kg-1 s3


3

((8.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.34141881 × 1012 m-1 kg-1 s3


4

((8.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.50606411 × 1012 m-1 kg-1 s3


5

((8.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00485128 × 1012 m-1 kg-1 s3


6

((8.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6707094 × 1012 m-1 kg-1 s3


7

((8.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43203663 × 1012 m-1 kg-1 s3


8

((8.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25303205 × 1012 m-1 kg-1 s3


198

1

((9.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0075141 × 1013 m-1 kg-1 s3


2

((9.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.03757049 × 1012 m-1 kg-1 s3


3

((9.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.35838033 × 1012 m-1 kg-1 s3


4

((9.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.51878524 × 1012 m-1 kg-1 s3


5

((9.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0150282 × 1012 m-1 kg-1 s3


6

((9.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


7

((9.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43930585 × 1012 m-1 kg-1 s3


8

((9.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25939262 × 1012 m-1 kg-1 s3


199

1

((9.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01260255 × 1013 m-1 kg-1 s3


2

((9.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.06301277 × 1012 m-1 kg-1 s3


3

((9.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.37534184 × 1012 m-1 kg-1 s3


4

((9.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.53150638 × 1012 m-1 kg-1 s3


5

((9.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.02520511 × 1012 m-1 kg-1 s3


6

((9.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.68767092 × 1012 m-1 kg-1 s3


7

((9.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44657508 × 1012 m-1 kg-1 s3


8

((9.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26575319 × 1012 m-1 kg-1 s3


200

1

((9.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1013 m-1 kg-1 s3


2

((9.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.08845504 × 1012 m-1 kg-1 s3


3

((9.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.39230336 × 1012 m-1 kg-1 s3


4

((9.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.54422752 × 1012 m-1 kg-1 s3


5

((9.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538202 × 1012 m-1 kg-1 s3


6

((9.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.69615168 × 1012 m-1 kg-1 s3


7

((9.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4538443 × 1012 m-1 kg-1 s3


8

((9.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


Self Assembling nanites part one.

Top down: grind down a material into its wanted shape but creates waste. 

Bottom up: build slowly the intricate parts. 

A solid method is to create the nanites in a combined fashion. 

You’re building cubli’s. 

Use: pyrolysis carbon casing to be safe incase of failure inside the body and allow available attachments to drugs or operating tools. Cancerous bone is weak. (I believe so you may not need carbide tips to get through if going slowly enough). Sewing systems can join molecularly within the body at attachment points similar to spider web sacks joining together in series and rotated out with a twist to the nearest neighbor to continue the feed until the suture is done. 

Top down to manufacture housing and empty inside shell. A series of holes is drilled at each cross corner so as to not be totally flat, where you’ll later bond conductive material to electro magnetize those sides and corners using dip pen lithography.  

Waste is removed continuously and recycled into pure material once atomic slag is removed if any. 

Bottom-up using recycled innards plus additional materials to build control mechanics. 

Molecular beam epitaxy to lay films of atoms inside the inner workings in specific orders or “shells” until all moving and inert parts are manufactured and in place as warranted. Will have to ask the creators or a computer optimization algorithm to find the best method. Battery cells will have to be dropped into place and connected with dip pen lithography again. 

Build the system on a roll to roll “conveyer system” and you end up with the finished product at the end. 

Test outside body on cancerous white blood cells with users artificial cytokines and antibodies. Or coronaviruses.  Force them to encircle the viruses as artificial kill cells and use the batteries to heat the systems conductive materials with partial RBCs cellular make up on the drug attachment points that the corona wants to bond to and then heat to the viruses destruction point and the virus is eradicated from within with simple nanites. Remove dirty nanites from system. Clean. Repeat. 

Using cubli’s To deliver drugs against or with blood flow at any size including to fight bone marrow and lymphoma cancers. The first en mass medical nanites.

Here’s the basic design of them. I don’t know why this wasn’t done straight away.

Here’s the basic design. Three rotating sides against an inner torque mechanism to get it to jump. Or balance on one side. Or move in a controlled fall. If you place those inside an exterior set of shells including a medication you can do a myriad of healing things with them, while also controlling a series of them in succession or at once to sew from the inside out, deliver medicines as far as into the bone inside an implant that may or may not need to be removed later to treat bone cancer. Treat lymphomas by surrounding the white blood cells at their choke points or found areas of travel. Much less painful than chemo as you could irradiate the bot, have them hit their points of impact and then head to a port and attach, magnetically, through cancerous tissue collection, like collecting in a net—while flushing the user with fresh healthy white blood cells from their own stem cells so they don’t become continuously cancerous. 

These could easily be the first series of nanites used to treat all sorts of sicknesses. 

Hope you have a wonderful day/night.
-J.

Blue and red are poles of magnets also need corner attachments so that they can be “twisted or twisting” as they move within the body. Green would be the drugs/ tools to work within the body.

It’s about that simple. I can draw this up in solid works if you like.

Top down: grind down a material into its wanted shape but creates waste. 

Bottom up: build slowly the intricate parts. 

A solid method is to create the nanites in a combined fashion. 

You’re building cubli’s. 

Use: pyrolysis carbon casing to be safe incase of failure inside the body and allow available attachments to drugs or operating tools. Cancerous bone is weak. (I believe so you may not need carbide tips to get through if going slowly enough). Sewing systems can join molecularly within the body at attachment points similar to spider web sacks joining together in series and rotated out with a twist to the nearest neighbor to continue the feed until the suture is done. 

Top down to manufacture housing and empty inside shell. A series of holes is drilled at each cross corner so as to not be totally flat, where you’ll later bond conductive material to electro magnetize those sides and corners using dip pen lithography.  

Waste is removed continuously and recycled into pure material once atomic slag is removed if any. 

Bottom-up using recycled innards plus additional materials to build control mechanics. 

Molecular beam epitaxy to lay films of atoms inside the inner workings in specific orders or “shells” until all moving and inert parts are manufactured and in place as warranted. Will have to ask the creators or a computer optimization algorithm to find the best method. Battery cells will have to be dropped into place and connected with dip pen lithography again. 

Build the system on a roll to roll “conveyer system” and you end up with the finished product at the end. 

Test outside body on cancerous white blood cells with users artificial cytokines and antibodies. Or coronaviruses.  Force them to encircle the viruses as artificial kill cells and use the batteries to heat the systems conductive materials with partial RBCs cellular make up on the drug attachment points that the corona wants to bond to and then heat to the viruses destruction point and the virus is eradicated from within with simple nanites. Remove dirty nanites from system. Clean. Repeat. 

Thanks for your time,
-J.

There seems to be a Boson (negatively charged) missing from the roster.

IMG_0046.jpeg

Mass/Charge/Spin:

Use Helium-3 

Lithium Titanate -> (Lithium pebble breeders)

Tritium (Hydrogen3)-> Helium3 

This is a Boson (Hopefully not muon) build. 
Seems to be a negative Boson missing. 

Here’s an idea of what the build may be if that’s ever not found: 
You have your Z and W bosons, both with Mass and spin. You use the superfluidity of Helium3 to force the heavy bosons, like that of a bombarding Higgs Boson in succession through a series of Z alternating W bosons so that they collide and are forced into differing areas as the Higgs pushes against them “upwards” in the superfluid. 

As they collide they get excited and release energy towards the top of the system as heat which can be cycled off as electricity as well as radioactivity. Changing the near zero temp at the bottom to a higher range, forcing the cooler superfluid to compress below the heating superfluid before it sublimates into another form where it will take a change state and become some form of energy carrier. Hopefully by splitting (or combining the overall energy of) a Z and a W boson. 

Those that don’t release energy or bond to another atom, knowing that the boson is a force carrier and “holds” matter in place while a superfluid does the exact opposite—you should get an artificial friction between the two creating a new type of material be it magnetic flow type, Eddie currents, or attraction/repulsion between the two as the electrons are expanded and the pulling forces between the two become much greater. 

Once a negative spin Boson is found then it’s simplest to set up each of these parts as a battery as you would and bombard them with Higgs bosons as the electrolyte as they are the propulsion function within the superfluid, while the W boson would be your anode while you use the cathode boson to exit the energy out of the system in it’s multiple available forms. 

Vector Analysis of a moving object to make it appear smaller than it is, even when stationary.

I’m using boats as a reference here because this is what I dreamt of about ten minutes ago–playing with my brother. Some type of military boat game.

Every country has radar of some type, and all you need to do it make your self slip through it is to move within the interference zones of each type at the vector intervals ranges between their minimum and maximum based on gravity and motion of travel to not be seen as well. They already design boats to have a lower footprint. I’m sure that goes for every unit type of the old war style.

So how do you disrupt your whole entire ship/planes/cars units footprint? By making it resonate continuously with a dedicated device at its appropriate place(s).

Let me show you a few badly drawn diagrams to show you what I mean:

The problem is now that we’ve got satellites pumping them down as well. So you’ve got to make 3-d adaptive versions of this. They don’t look dissimilar to:

So to solve that issue you have an inner ring and an outer ring of these creating these sin (I keep seeing sin but it could be another function. It’s just the simplest version to get the point across that I could think of) functions in 3d in all directions cycling against what is found by your own technology and it should vastly shrink your units footprint. The outer casing may look similar to a geometric golf ball. But it may be possible to utilize these functions without much of a casing at all.

Just an idea.
Have a good day/night.
-J.

An idea for detonation engines using a spherical dynamo:

Instead of using a circular wave format with multiple inlets you use a polyhedral sphere where there are insulated leads into through the outer core and in through and back out again of the inner core to their firing location so that the gasses enter into the system and bend around creating heat pressure at the bends and then firing up and out of the tubes at an angle to spin around in any sync format needed times the number of opens active at the time (the others being flush and plugged if needed) and move until they are forced downwards by gravity and released in minute or as large as needed amounts causing propulsion as needed to cause flight. Like how an older typewriters alphanumeric ball would spin as it is jostled around by it’s handling arms, but inverted—so from within and stabilized. 

Since there are bends in the metal they will get hotter than the rest of the tubing, and can be used to control the pressure from the inner cores expansion towards the outer cores insulated tubing while you are making a series of valvular conduit shapes to precisely control the materials through the system until their release as they relate to gravity and loss of material.  

It would also let you you release from any inlet wanted to allow any direction so that if you redesigned the flaps of the cone to be moveable you could guide the launched device with better precision if other guiding devices were in place as well as less loss of fuel, the trade off being it would be a more complicated design. Green being directional thrust, yellow being wiring, black being insulator, red being outer casing, purple being inner casing. The closer to a sphere you get the polyhedral the better off you’ll be because of the amount of valvular units would level out the system faster/more smoothly once up and running, and the directional thrust would also be useful.

Turbulence: Improving Tokamak. Adding an additional layer of higher RF (mm) Wave or better at all points to create one smooth transition, or multi-collision eddies to increase neutron output. Drawings can be made if needed.

I have a field, controlled by magnets. A ring, within a ring. Causing a spiral of plasma to spin either counter clock wise or clock wise which can be changed upon build specifics. But they use RF to control the disruption of the material. So, we have Mag Field one, inner core, spinning around CCW, or CW, we have Mag Field two spinning within the system around it, to form a casing which spirals as it moves.  The spiral causes turbulence.

If it were a food it would be a doughnut. 
The plasma would be an eternal atomic pastry. The islands that cool the system down to uselessness would be the crust of the foodstuff reacting to the outer limits of the system, unbeknownst to the user. So what do you do to stale dough. You shear it away from the wanted plane as fast as possible before it ruins the rest of the dough.

So what’s to be done with our reactive doughnut? Let it continue on with it’s crust that forces a problem, or to sharpen a series of knives against the target in all points of contention possible and have them run as a continuous subsystem through their RF control modulations to become the disruption of disruption’s disruptor.

1GHZ+-20MG use of microwaves, means it must be of higher depth into the system to hit all points so that no islands may form. Means higher hertz minute width singularly but encompassing the entirety of the system so no islands may form this can be explained down below. 

If using hydrogen to react like the common copper connection ie freely moving electrons, you will get electron slag, where they have bounded off of one another or burnt out completely due to the age of the atom or the space available not being ideal within the plasma to cause some cooling effect. If the chain reaction lasts long enough you get these islands.  

Down below:

If you were to use mm RF Waves (I think I’m heading in the right direction, but if they’re not the smaller particles with a higher hertz move the other way please). 

you could hit all points of the plasma at once or in alternating waves at an angle to cause the internal spiral to lessen, become stagnant, or even reverse in eddies so as to have sectional heat relative to what is wanted but in a much smaller package as it has greater volume of collision points within the toroidal rings over time and the collection points can then be managed as needed down the very electron required as well. Then the neutrons spilling out wouldn’t be just one justified place, which is just a start, but many spoked areas. It also means if an island forms it is likely to form away from the points of collision or perhaps at the points of collision and we would have more information to work with. If it’s at the points of no collision, they’re too far apart and moving too slowly and that’s where you pump your energy back into the system. If it’s at the points of collision, it’s either a fusion or slag that has now been broken up into many smaller slivers that can be blasted through atomically or by a higher RF as stated above and broken down to its plasma heat level that everyone wants. Either way it might help with the design.  

Attempt at drawing out a neural network that could fight covid if all hospitals shared information at one point of time each day synchronized.

Basically that. You’ll have to read the other articles below this one to get the gist of what I was thinking and read this image from the bottom up for whichever reason.

A basic neural net from last night to fight SARS-COvid-02.

I’m unsure whether the main nodes extraneous markers need to be interconnected just for potential analyzation. The darker blue on the right side is the additional effects to be measured per layer one spoke. One spoke is location to next date marker so must continue in it’s own path on the left through the system. Connecting to location in layer three.
Layer two goes in both directions as the disease travel forms can change over time and on a whim.
Layer three is the splintering and conditional symptomatic change effect nodes.
The last node (blue) feeds into the next data set.