The Range of Photon Energies Transmission Between Atomic Picometer Bonds and their Energies Mathematics in Average Earth Gravity over Time:

Photon: A particle representing a quantum of light or other electromagnetic radiation. A photon carries energy proportional to the radiation frequency but has zero rest mass.

Quantum: A particle representing a quantum of light or other electromagnetic radiation. A photon carries energy proportional to the radiation frequency but has zero rest mass.

‘This excess energy is emitted in quanta of electromagnetic radiation (photons of light) that have exactly same energy as the difference in energy between the orbits jumped by the electron.’

Let’s play a game: One where the distances energies over time between any number of atomic bonds of any kind’s electrons have been mapped.

Actually let me do that for you.

If this makes sense…

The things we need to know:
The atom type one. The atom type 2. Their bond lengths (the distance an electron would need to jump over the to the new outer shell tells us everything we need to know about photon travels per atom type pairings). The energy in Kj/Mol to break that bond. You’ll see why once this document is done. This is likely going to be quite dry so get yourself something to drink.

We’re assuming we can remove an electron from any atom type here. Just one to start. There are deep delving shell subsystems to be implemented when asked but it’s not as complicated as you’d think. (Hertz of the outer ring/ the size of the number of electrons in the shell as multiplied by it’s/their gravitational environment) should give you the speed of the outer shell, plus done again once those are found to show the differences in the wobble between the shells that occur naturally as the electrons pass by each other and interact upon each other. The wave function of the electrons as they pass around the nucleus. Basic stuff.

We know that an electron in “motion” (as far as I’ve been told) is 2,200 km/sec and weigh within an 1836th ratio of a proton. Electron Weight: 9.109×10−31 kg. Proton Weight: 1.67262 × 10−27 kg.

Again quite dry. I’m about to try to list out all the paired combinations of atoms, their valence bonds, the distance of the two central points of the two atoms plus their bond distance up until I can no longer. The question we have to ask is where does the photon form? Along the rim of one of the atoms, depending on it’s nature, or at the meeting point depending on their differences?

I realized that I could make this easier on myself by computing the averages from 100 to 200 picometers, than computing all of the single, double, and triple, bonds per dual atoms relationship.
So let’s try that.

[100 picometers/(2200 kilometers x *(1-8 [9.109×10−31 kg] electrons in valence shell))]*[Gravity’s action on the average masses {9.80665 m/s2(within 7 parts per billion as governed by this Earth bound experiment: https://news.stanford.edu/pr/99/atomgravity990825.html.)}]

100. Figuring out how to get it done for each electron valence number.

The energies of the bonds of a 100 picometer bond from 1-8 valence electrons. There is an error here. It should read / by Average Gravity of Earth not Multiplied.

_________Sample [1 electron at 102 pm/2200km/sec] ________

102: ((4.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 (m / (s^2))) =
______________________________________________________________

101:
1:

((4.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.13933959 × 1012 m-1 kg-1 s3


2:

((4.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.56966979 × 1012 m-1 kg-1 s3


3:

((4.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7131132 × 1012 m-1 kg-1 s3


4:

((4.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2848349 × 1012 m-1 kg-1 s3


5:

((4.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02786792 × 1012 m-1 kg-1 s3


6:

((4.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.56556598 × 1011 m-1 kg-1 s3


7:

((4.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.3419137 × 1011 m-1 kg-1 s3


8:

((4.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.42417449 × 1011 m-1 kg-1 s3


102:

1:

((4.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.19022414 × 1012 m-1 kg-1 s3


2:

((4.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.59511207 × 1012 m-1 kg-1 s3


3:

((4.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.73007471 × 1012 m-1 kg-1 s3


4:

((4.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29755604 × 1012 m-1 kg-1 s3


5:

((4.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03804483 × 1012 m-1 kg-1 s3


6:

((4.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1011 m-1 kg-1 s3


7:

((4.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.41460592 × 1011 m-1 kg-1 s3


8:

((4.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.48778018 × 1011 m-1 kg-1 s3


103:

1:

((4.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.24110869 × 1012 m-1 kg-1 s3


2:

((4.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.62055434 × 1012 m-1 kg-1 s3


3:

((4.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74703623 × 1012 m-1 kg-1 s3


4:

((4.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31027717 × 1012 m-1 kg-1 s3


5:

((4.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04822174 × 1012 m-1 kg-1 s3


6:

((4.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.73518115 × 1011 m-1 kg-1 s3


7:

((4.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48729813 × 1011 m-1 kg-1 s3


8:

((4.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.55138586 × 1011 m-1 kg-1 s3


104

1

((4.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.29199324 × 1012 m-1 kg-1 s3


2

((4.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.64599662 × 1012 m-1 kg-1 s3


3

((4.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76399775 × 1012 m-1 kg-1 s3


4

((4.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


5

((4.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05839865 × 1012 m-1 kg-1 s3


6

((4.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.81998874 × 1011 m-1 kg-1 s3


7

((4.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.55999035 × 1011 m-1 kg-1 s3


8

((4.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.61499155 × 1011 m-1 kg-1 s3


105

1

((4.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.34287779 × 1012 m-1 kg-1 s3


2

((4.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.67143889 × 1012 m-1 kg-1 s3


3

((4.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


4

((4.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33571945 × 1012 m-1 kg-1 s3


5

((4.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


6

((4.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1011 m-1 kg-1 s3


7

((4.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268255 × 1011 m-1 kg-1 s3


8

((4.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.67859724 × 1011 m-1 kg-1 s3


106

1

((4.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.39376234 × 1012 m-1 kg-1 s3


2

((4.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.69688117 × 1012 m-1 kg-1 s3


3

((4.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.79792078 × 1012 m-1 kg-1 s3


4

((4.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34844059 × 1012 m-1 kg-1 s3


5

((4.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07875247 × 1012 m-1 kg-1 s3


6

((4.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.98960391 × 1011 m-1 kg-1 s3


7

((4.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.70537478 × 1011 m-1 kg-1 s3


8

((4.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.74220293 × 1011 m-1 kg-1 s3


107

1

((4.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.44464689 × 1012 m-1 kg-1 s3


2

((4.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.72232344 × 1012 m-1 kg-1 s3


3

((4.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8148823 × 1012 m-1 kg-1 s3


4

((4.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36116172 × 1012 m-1 kg-1 s3


5

((4.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08892938 × 1012 m-1 kg-1 s3


6

((4.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.07441148 × 1011 m-1 kg-1 s3


7

((4.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.77806698 × 1011 m-1 kg-1 s3


8

((4.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.80580861 × 1011 m-1 kg-1 s3


108

1

((4.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.49553144 × 1012 m-1 kg-1 s3


2

((4.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.74776572 × 1012 m-1 kg-1 s3


3

((4.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184381 × 1012 m-1 kg-1 s3


4

((4.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


5

((4.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09910629 × 1012 m-1 kg-1 s3


6

((4.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921907 × 1011 m-1 kg-1 s3


7

((4.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.85075921 × 1011 m-1 kg-1 s3


8

((4.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.8694143 × 1011 m-1 kg-1 s3


109

1

((4.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.54641599 × 1012 m-1 kg-1 s3


2

((4.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.77320799 × 1012 m-1 kg-1 s3


3

((4.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84880533 × 1012 m-1 kg-1 s3


4

((4.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.386604 × 1012 m-1 kg-1 s3


5

((4.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1092832 × 1012 m-1 kg-1 s3


6

((4.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1092832 × 1012 m-1 kg-1 s3


7

((4.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.92345141 × 1011 m-1 kg-1 s3


8

((4.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.93301998 × 1011 m-1 kg-1 s3


110

1

((5.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.59730054 × 1012 m-1 kg-1 s3


2

((5.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.79865027 × 1012 m-1 kg-1 s3


3

((5.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.86576685 × 1012 m-1 kg-1 s3


4

((5.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39932514 × 1012 m-1 kg-1 s3


5

((5.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


6

((5.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.32883424 × 1011 m-1 kg-1 s3


7

((5.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.99614363 × 1011 m-1 kg-1 s3


8

((5.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.99662568 × 1011 m-1 kg-1 s3


111

1

((5.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.6481851 × 1012 m-1 kg-1 s3


2

((5.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.82409255 × 1012 m-1 kg-1 s3


3

((5.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272837 × 1012 m-1 kg-1 s3


4

((5.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41204627 × 1012 m-1 kg-1 s3


5

((5.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12963702 × 1012 m-1 kg-1 s3


6

((5.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364183 × 1011 m-1 kg-1 s3


7

((5.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.06883586 × 1011 m-1 kg-1 s3


8

((5.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.06023137 × 1011 m-1 kg-1 s3


112

1

((5.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.69906964 × 1012 m-1 kg-1 s3


2

((5.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.84953482 × 1012 m-1 kg-1 s3


3

((5.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.89968988 × 1012 m-1 kg-1 s3


4

((5.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


5

((5.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13981393 × 1012 m-1 kg-1 s3


6

((5.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.49844941 × 1011 m-1 kg-1 s3


7

((5.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152806 × 1011 m-1 kg-1 s3


8

((5.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.12383705 × 1011 m-1 kg-1 s3


113

1

((5.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.7499542 × 1012 m-1 kg-1 s3


2

((5.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.8749771 × 1012 m-1 kg-1 s3


3

((5.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9166514 × 1012 m-1 kg-1 s3


4

((5.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43748855 × 1012 m-1 kg-1 s3


5

((5.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14999084 × 1012 m-1 kg-1 s3


6

((5.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.583257 × 1011 m-1 kg-1 s3


7

((5.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.21422028 × 1011 m-1 kg-1 s3


8

((5.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.18744275 × 1011 m-1 kg-1 s3


114

1

((5.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.80083874 × 1012 m-1 kg-1 s3


2

((5.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.90041937 × 1012 m-1 kg-1 s3


3

((5.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361291 × 1012 m-1 kg-1 s3


4

((5.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45020969 × 1012 m-1 kg-1 s3


5

((5.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16016775 × 1012 m-1 kg-1 s3


6

((5.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806457 × 1011 m-1 kg-1 s3


7

((5.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.28691249 × 1011 m-1 kg-1 s3


8

((5.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.25104843 × 1011 m-1 kg-1 s3


115

1

((5.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.8517233 × 1012 m-1 kg-1 s3


2

((5.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.92586165 × 1012 m-1 kg-1 s3


3

((5.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95057443 × 1012 m-1 kg-1 s3


4

((5.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.46293082 × 1012 m-1 kg-1 s3


5

((5.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


6

((5.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.75287216 × 1011 m-1 kg-1 s3


7

((5.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.35960471 × 1011 m-1 kg-1 s3


8

((5.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.31465412 × 1011 m-1 kg-1 s3


116

1

((5.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.90260784 × 1012 m-1 kg-1 s3


2

((5.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.95130392 × 1012 m-1 kg-1 s3


3

((5.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.96753595 × 1012 m-1 kg-1 s3


4

((5.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


5

((5.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18052157 × 1012 m-1 kg-1 s3


6

((5.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.83767974 × 1011 m-1 kg-1 s3


7

((5.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.43229692 × 1011 m-1 kg-1 s3


8

((5.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.3782598 × 1011 m-1 kg-1 s3


117

1

((5.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.9534924 × 1012 m-1 kg-1 s3


2

((5.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.9767462 × 1012 m-1 kg-1 s3


3

((5.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449747 × 1012 m-1 kg-1 s3


4

((5.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4883731 × 1012 m-1 kg-1 s3


5

((5.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19069848 × 1012 m-1 kg-1 s3


6

((5.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248733 × 1011 m-1 kg-1 s3


7

((5.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.50498914 × 1011 m-1 kg-1 s3


8

((5.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.4418655 × 1011 m-1 kg-1 s3


118

1

((5.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.00437694 × 1012 m-1 kg-1 s3


2

((5.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.00218847 × 1012 m-1 kg-1 s3


3

((5.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00145898 × 1012 m-1 kg-1 s3


4

((5.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50109424 × 1012 m-1 kg-1 s3


5

((5.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20087539 × 1012 m-1 kg-1 s3


6

((5.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00072949 × 1012 m-1 kg-1 s3


7

((5.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.57768135 × 1011 m-1 kg-1 s3


8

((5.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.50547118 × 1011 m-1 kg-1 s3


119

1

((5.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.0552615 × 1012 m-1 kg-1 s3


2

((5.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.02763075 × 1012 m-1 kg-1 s3


3

((5.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0184205 × 1012 m-1 kg-1 s3


4

((5.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.51381537 × 1012 m-1 kg-1 s3


5

((5.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2110523 × 1012 m-1 kg-1 s3


6

((5.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00921025 × 1012 m-1 kg-1 s3


7

((5.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1011 m-1 kg-1 s3


8

((5.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.56907687 × 1011 m-1 kg-1 s3


120

1

((5.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.10614604 × 1012 m-1 kg-1 s3


2

((5.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.05307302 × 1012 m-1 kg-1 s3


3

((5.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538201 × 1012 m-1 kg-1 s3


4

((5.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


5

((5.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


6

((5.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


7

((5.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.72306577 × 1011 m-1 kg-1 s3


8

((5.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268255 × 1011 m-1 kg-1 s3


121

1

((5.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.1570306 × 1012 m-1 kg-1 s3


2

((5.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.0785153 × 1012 m-1 kg-1 s3


3

((5.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.05234353 × 1012 m-1 kg-1 s3


4

((5.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53925765 × 1012 m-1 kg-1 s3


5

((5.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23140612 × 1012 m-1 kg-1 s3


6

((5.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02617177 × 1012 m-1 kg-1 s3


7

((5.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.795758 × 1011 m-1 kg-1 s3


8

((5.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.69628825 × 1011 m-1 kg-1 s3


122

1

((5.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.20791515 × 1012 m-1 kg-1 s3


2

((5.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.10395758 × 1012 m-1 kg-1 s3


3

((5.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.06930505 × 1012 m-1 kg-1 s3


4

((5.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55197879 × 1012 m-1 kg-1 s3


5

((5.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24158303 × 1012 m-1 kg-1 s3


6

((5.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03465253 × 1012 m-1 kg-1 s3


7

((5.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.86845022 × 1011 m-1 kg-1 s3


8

((5.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.75989394 × 1011 m-1 kg-1 s3


123

1

((5.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.2587997 × 1012 m-1 kg-1 s3


2

((5.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.12939985 × 1012 m-1 kg-1 s3


3

((5.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.08626657 × 1012 m-1 kg-1 s3


4

((5.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56469992 × 1012 m-1 kg-1 s3


5

((5.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25175994 × 1012 m-1 kg-1 s3


6

((5.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04313328 × 1012 m-1 kg-1 s3


7

((5.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.94114242 × 1011 m-1 kg-1 s3


8

((5.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.82349962 × 1011 m-1 kg-1 s3


124

1

((5.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.30968425 × 1012 m-1 kg-1 s3


2

((5.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.15484213 × 1012 m-1 kg-1 s3


3

((5.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.10322808 × 1012 m-1 kg-1 s3


4

((5.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


5

((5.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26193685 × 1012 m-1 kg-1 s3


6

((5.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05161404 × 1012 m-1 kg-1 s3


7

((5.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.01383465 × 1011 m-1 kg-1 s3


8

((5.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.88710532 × 1011 m-1 kg-1 s3


125

1

((5.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.3605688 × 1012 m-1 kg-1 s3


2

((5.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.1802844 × 1012 m-1 kg-1 s3


3

((5.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.1201896 × 1012 m-1 kg-1 s3


4

((5.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5901422 × 1012 m-1 kg-1 s3


5

((5.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


6

((5.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0600948 × 1012 m-1 kg-1 s3


7

((5.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.08652685 × 1011 m-1 kg-1 s3


8

((5.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.950711 × 1011 m-1 kg-1 s3


126

1

((5.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.41145335 × 1012 m-1 kg-1 s3


2

((5.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.20572668 × 1012 m-1 kg-1 s3


3

((5.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.13715112 × 1012 m-1 kg-1 s3


4

((5.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60286334 × 1012 m-1 kg-1 s3


5

((5.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28229067 × 1012 m-1 kg-1 s3


6

((5.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


7

((5.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921908 × 1011 m-1 kg-1 s3


8

((5.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.01431669 × 1011 m-1 kg-1 s3


127

1

((5.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.4623379 × 1012 m-1 kg-1 s3


2

((5.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.23116895 × 1012 m-1 kg-1 s3


3

((5.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.15411263 × 1012 m-1 kg-1 s3


4

((5.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.61558447 × 1012 m-1 kg-1 s3


5

((5.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29246758 × 1012 m-1 kg-1 s3


6

((5.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07705632 × 1012 m-1 kg-1 s3


7

((5.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.23191128 × 1011 m-1 kg-1 s3


8

((5.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.07792237 × 1011 m-1 kg-1 s3


128

1

((5.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.51322245 × 1012 m-1 kg-1 s3


2

((5.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.25661123 × 1012 m-1 kg-1 s3


3

((5.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.17107415 × 1012 m-1 kg-1 s3


4

((5.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


5

((5.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30264449 × 1012 m-1 kg-1 s3


6

((5.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08553708 × 1012 m-1 kg-1 s3


7

((5.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.3046035 × 1011 m-1 kg-1 s3


8

5.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152807 × 1011 m-1 kg-1 s3


129

1

((5.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.564107 × 1012 m-1 kg-1 s3


2

((5.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.2820535 × 1012 m-1 kg-1 s3


3

((5.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.18803567 × 1012 m-1 kg-1 s3


4

((5.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64102675 × 1012 m-1 kg-1 s3


5

((5.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3128214 × 1012 m-1 kg-1 s3


6

((5.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09401783 × 1012 m-1 kg-1 s3


7

((5.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.37729571 × 1011 m-1 kg-1 s3


8

((5.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.20513375 × 1011 m-1 kg-1 s3


130

1

((5.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.61499155 × 1012 m-1 kg-1 s3


2

((5.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.30749578 × 1012 m-1 kg-1 s3


3

((5.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.20499718 × 1012 m-1 kg-1 s3


4

((5.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65374789 × 1012 m-1 kg-1 s3


5

((5.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


6

((5.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10249859 × 1012 m-1 kg-1 s3


7

((5.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.44998793 × 1011 m-1 kg-1 s3


8

((5.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.26873944 × 1011 m-1 kg-1 s3


131

1

((5.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.6658761 × 1012 m-1 kg-1 s3


2

((5.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.33293805 × 1012 m-1 kg-1 s3


3

((5.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.2219587 × 1012 m-1 kg-1 s3


4

((5.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66646902 × 1012 m-1 kg-1 s3


5

((5.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33317522 × 1012 m-1 kg-1 s3


6

((5.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11097935 × 1012 m-1 kg-1 s3


7

((5.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.52268014 × 1011 m-1 kg-1 s3


8

((5.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.33234512 × 1011 m-1 kg-1 s3


132

1

((6.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.71676065 × 1012 m-1 kg-1 s3


2

((6.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.35838033 × 1012 m-1 kg-1 s3


3

((6.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.23892022 × 1012 m-1 kg-1 s3


4

((6.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


5

((6.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34335213 × 1012 m-1 kg-1 s3


6

((6.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


7

((6.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.59537236 × 1011 m-1 kg-1 s3


8

((6.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.39595081 × 1011 m-1 kg-1 s3


133

1

((6.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.76764521 × 1012 m-1 kg-1 s3


2

((6.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.3838226 × 1012 m-1 kg-1 s3


3

((6.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2 255 881 735 813 m-1 kg-1 s3


4

((6.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6919113 × 1012 m-1 kg-1 s3


5

((6.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35352904 × 1012 m-1 kg-1 s3


6

((6.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12794087 × 1012 m-1 kg-1 s3


7

((6.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1011 m-1 kg-1 s3


8

((6.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.45955651 × 1011 m-1 kg-1 s3


134

1

((6.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.81852975 × 1012 m-1 kg-1 s3


2

((6.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.40926488 × 1012 m-1 kg-1 s3


3

((6.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.27284325 × 1012 m-1 kg-1 s3


4

((6.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.70463244 × 1012 m-1 kg-1 s3


5

((6.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36370595 × 1012 m-1 kg-1 s3


6

((6.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13642163 × 1012 m-1 kg-1 s3


7

((6.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.74075679 × 1011 m-1 kg-1 s3


8

((6.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.52316219 × 1011 m-1 kg-1 s3


135

1

((6.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.86941431 × 1012 m-1 kg-1 s3


2

((6.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.43470715 × 1012 m-1 kg-1 s3


3

((6.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.28980477 × 1012 m-1 kg-1 s3


4

((6.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.71735358 × 1012 m-1 kg-1 s3


5

((6.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


6

((6.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14490238 × 1012 m-1 kg-1 s3


7

((6.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.81344901 × 1011 m-1 kg-1 s3


8

((6.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.58676788 × 1011 m-1 kg-1 s3


136

1

((6.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.92029885 × 1012 m-1 kg-1 s3


2

((6.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3 460 149 425 748 m-1 kg-1 s3


3

((6.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2 306 766 283 832 m-1 kg-1 s3


4

((6.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1 730 074 712 874 m-1 kg-1 s3


5

((6.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38405977 × 1012 m-1 kg-1 s3


6

((6.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1 153 383 141 916 m-1 kg-1 s3


7

((6.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.88614122 × 1011 m-1 kg-1 s3


8

((6.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =865 037 356 437 m-1 kg-1 s3


137

1

((6.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =6.97118341 × 1012 m-1 kg-1 s3


2

((6.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.4855917 × 1012 m-1 kg-1 s3


3

((6.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.3237278 × 1012 m-1 kg-1 s3


4

((6.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74279585 × 1012 m-1 kg-1 s3


5

((6.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39423668 × 1012 m-1 kg-1 s3


6

((6.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1618639 × 1012 m-1 kg-1 s3


7

((6.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.95883344 × 1011 m-1 kg-1 s3


8

((6.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.71397926 × 1011 m-1 kg-1 s3


138

1

((6.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.02206795 × 1012 m-1 kg-1 s3


2

((6.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.51103398 × 1012 m-1 kg-1 s3


3

((6.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.34068932 × 1012 m-1 kg-1 s3


4

((6.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.75551699 × 1012 m-1 kg-1 s3


5

((6.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.40441359 × 1012 m-1 kg-1 s3


6

((6.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


7

((6.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00315256 × 1012 m-1 kg-1 s3


8

((6.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.77758494 × 1011 m-1 kg-1 s3


139

1

((6.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.07295251 × 1012 m-1 kg-1 s3


2

((6.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.53647625 × 1012 m-1 kg-1 s3


3

((6.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.35765084 × 1012 m-1 kg-1 s3


4

((6.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76823813 × 1012 m-1 kg-1 s3


5

((6.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4145905 × 1012 m-1 kg-1 s3


6

((6.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17882542 × 1012 m-1 kg-1 s3


7

((6.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01042179 × 1012 m-1 kg-1 s3


8

((6.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.84119063 × 1011 m-1 kg-1 s3


140

1

((6.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.12383705 × 1012 m-1 kg-1 s3


2

((6.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.56191853 × 1012 m-1 kg-1 s3


3

((6.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.37461235 × 1012 m-1 kg-1 s3


4

((6.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


5

((6.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


6

((6.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18730618 × 1012 m-1 kg-1 s3


7

((6.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


8

((6.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1011 m-1 kg-1 s3


141

1

((6.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.17472161 × 1012 m-1 kg-1 s3


2

((6.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.5873608 × 1012 m-1 kg-1 s3


3

((6.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.39157387 × 1012 m-1 kg-1 s3


4

((6.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7936804 × 1012 m-1 kg-1 s3


5

((6.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43494432 × 1012 m-1 kg-1 s3


6

((6.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19578693 × 1012 m-1 kg-1 s3


7

((6.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02496023 × 1012 m-1 kg-1 s3


8

((6.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.96840201 × 1011 m-1 kg-1 s3


142


1

((6.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.22560615 × 1012 m-1 kg-1 s3


2

((6.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.61280308 × 1012 m-1 kg-1 s3


3

((6.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.40853538 × 1012 m-1 kg-1 s3


4

((6.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.80640154 × 1012 m-1 kg-1 s3


5

((6.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44512123 × 1012 m-1 kg-1 s3


6

((6.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20426769 × 1012 m-1 kg-1 s3


7

((6.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03222945 × 1012 m-1 kg-1 s3


8

((6.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.03200769 × 1011 m-1 kg-1 s3


143

1

((6.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.27649071 × 1012 m-1 kg-1 s3


2

((6.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.63824535 × 1012 m-1 kg-1 s3


3

((6.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.4254969 × 1012 m-1 kg-1 s3


4

((6.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.81912268 × 1012 m-1 kg-1 s3


5

((6.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45529814 × 1012 m-1 kg-1 s3


6

((6.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21274845 × 1012 m-1 kg-1 s3


7

((6.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03949867 × 1012 m-1 kg-1 s3


8

((6.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.09561338 × 1011 m-1 kg-1 s3


144

1

((6.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.32737526 × 1012 m-1 kg-1 s3


2

((6.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.66368763 × 1012 m-1 kg-1 s3


3

((6.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.44245842 × 1012 m-1 kg-1 s3


4

((6.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184382 × 1012 m-1 kg-1 s3


5

((6.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.46547505 × 1012 m-1 kg-1 s3


6

((6.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


7

((6.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04676789 × 1012 m-1 kg-1 s3


8

((6.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921908 × 1011 m-1 kg-1 s3


145

1

((6.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.37825981 × 1012 m-1 kg-1 s3


2

((6.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.6891299 × 1012 m-1 kg-1 s3


3

((6.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.45941994 × 1012 m-1 kg-1 s3


4

((6.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84456495 × 1012 m-1 kg-1 s3


5

((6.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


6

((6.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22970997 × 1012 m-1 kg-1 s3


7

((6.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05403712 × 1012 m-1 kg-1 s3


8

((6.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.22282476 × 1011 m-1 kg-1 s3


146

1

((6.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.42914436 × 1012 m-1 kg-1 s3


2

((6.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.71457218 × 1012 m-1 kg-1 s3


3

((6.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.47638145 × 1012 m-1 kg-1 s3


4

((6.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.85728609 × 1012 m-1 kg-1 s3


5

((6.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.48582887 × 1012 m-1 kg-1 s3


6

((6.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23819073 × 1012 m-1 kg-1 s3


7

((6.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06130634 × 1012 m-1 kg-1 s3


8

((6.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.28643045 × 1011 m-1 kg-1 s3


147

1

((6.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48002891 × 1012 m-1 kg-1 s3


2

((6.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.48002891 × 1012 m-1 kg-1 s3


3

((6.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.49334297 × 1012 m-1 kg-1 s3


4

((6.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.87000723 × 1012 m-1 kg-1 s3


5

((6.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.49600578 × 1012 m-1 kg-1 s3


6

((6.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24667148 × 1012 m-1 kg-1 s3


7

((6.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


8

((6.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.35003613 × 1011 m-1 kg-1 s3


148

1

((6.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.53091346 × 1012 m-1 kg-1 s3


2

((6.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.76545673 × 1012 m-1 kg-1 s3


3

((6.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.51030449 × 1012 m-1 kg-1 s3


4

((6.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272837 × 1012 m-1 kg-1 s3


5

((6.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50618269 × 1012 m-1 kg-1 s3


6

((6.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25515224 × 1012 m-1 kg-1 s3


7

((6.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07584478 × 1012 m-1 kg-1 s3


8

((6.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364183 × 1011 m-1 kg-1 s3

It’s about here that I realized I should be using the Planck lengths so if you want approximately much closer data /by 9.223e+18
149

1

((6.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.58179801 × 1012 m-1 kg-1 s3


2

((6.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.790899 × 1012 m-1 kg-1 s3


3

((6.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.527266 × 1012 m-1 kg-1 s3


4

((6.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8954495 × 1012 m-1 kg-1 s3


5

((6.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5163596 × 1012 m-1 kg-1 s3


6

((6.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.263633 × 1012 m-1 kg-1 s3


7

((6.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.083114 × 1012 m-1 kg-1 s3


8

((6.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.47724751 × 1011 m-1 kg-1 s3


150: Somewhere between here and 151 pm it starts to increase the connection’s gains. Probably along one or two Planck length(s).

1

((6.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.63268256 × 1012 m-1 kg-1 s3


2

((6.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.81634128 × 1012 m-1 kg-1 s3


3

((6.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.54422752 × 1012 m-1 kg-1 s3


4

((6.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.90817064 × 1012 m-1 kg-1 s3


5

((6.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


6

((6.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


7

((6.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09038322 × 1012 m-1 kg-1 s3


8

((6.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.5408532 × 1011 m-1 kg-1 s3


151

1

((6.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.68356711 × 1012 m-1 kg-1 s3


2

((6.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.84178355 × 1012 m-1 kg-1 s3


3

((6.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.56118904 × 1012 m-1 kg-1 s3


4

((6.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.92089178 × 1012 m-1 kg-1 s3


5

((6.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53671342 × 1012 m-1 kg-1 s3


6

((6.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28059452 × 1012 m-1 kg-1 s3


7

((6.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09765244 × 1012 m-1 kg-1 s3


8

((6.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.60445888 × 1011 m-1 kg-1 s3


152

1

((6.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.73445166 × 1012 m-1 kg-1 s3


2

((6.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.86722583 × 1012 m-1 kg-1 s3


3

((6.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.57815055 × 1012 m-1 kg-1 s3


4

((6.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361292 × 1012 m-1 kg-1 s3


5

((6.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.54689033 × 1012 m-1 kg-1 s3


6

((6.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.28907528 × 1012 m-1 kg-1 s3


7

((6.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10492167 × 1012 m-1 kg-1 s3


8

((6.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1011 m-1 kg-1 s3


153

1

((6.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.78533621 × 1012 m-1 kg-1 s3


2

((6.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.8926681 × 1012 m-1 kg-1 s3


3

((6.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.59511207 × 1012 m-1 kg-1 s3


4

((6.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.94633405 × 1012 m-1 kg-1 s3


5

((6.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55706724 × 1012 m-1 kg-1 s3


6

((6.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29755603 × 1012 m-1 kg-1 s3


7

((6.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11219089 × 1012 m-1 kg-1 s3


8

((6.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.73167026 × 1011 m-1 kg-1 s3


154

1

((7.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.83622076 × 1012 m-1 kg-1 s3


2

((7.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.91811038 × 1012 m-1 kg-1 s3


3

((7.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.61207359 × 1012 m-1 kg-1 s3


4

((7.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95905519 × 1012 m-1 kg-1 s3


5

((7.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56724415 × 1012 m-1 kg-1 s3


6

((7.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30603679 × 1012 m-1 kg-1 s3


7

((7.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


8

((7.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.79527595 × 1011 m-1 kg-1 s3


155

1

((7.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.88710532 × 1012 m-1 kg-1 s3


2

((7.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.94355266 × 1012 m-1 kg-1 s3


3

((7.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.62903511 × 1012 m-1 kg-1 s3


4

((7.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.97177633 × 1012 m-1 kg-1 s3


5

((7.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


6

((7.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31451755 × 1012 m-1 kg-1 s3


7

((7.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12672933 × 1012 m-1 kg-1 s3


8

((7.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.85888165 × 1011 m-1 kg-1 s3


156

1

((7.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.93798986 × 1012 m-1 kg-1 s3


2

((7.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.96899493 × 1012 m-1 kg-1 s3


3

((7.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.64599662 × 1012 m-1 kg-1 s3


4

((7.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449747 × 1012 m-1 kg-1 s3


5

((7.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.58759797 × 1012 m-1 kg-1 s3


6

((7.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


7

((7.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13399855 × 1012 m-1 kg-1 s3


8

((7.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248733 × 1011 m-1 kg-1 s3


157

1

((7.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =7.98887442 × 1012 m-1 kg-1 s3


2

((7.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.99443721 × 1012 m-1 kg-1 s3


3

((7.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.66295814 × 1012 m-1 kg-1 s3


4

((7.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9972186 × 1012 m-1 kg-1 s3


5

((7.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.59777488 × 1012 m-1 kg-1 s3


6

((7.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33147907 × 1012 m-1 kg-1 s3


7

((7.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14126777 × 1012 m-1 kg-1 s3


8

((7.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.98609302 × 1011 m-1 kg-1 s3


158

1

((7.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.03975896 × 1012 m-1 kg-1 s3


2

((7.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.01987948 × 1012 m-1 kg-1 s3


3

((7.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.67991965 × 1012 m-1 kg-1 s3


4

((7.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00993974 × 1012 m-1 kg-1 s3


5

((7.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60795179 × 1012 m-1 kg-1 s3


6

((7.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33995983 × 1012 m-1 kg-1 s3


7

((7.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14853699 × 1012 m-1 kg-1 s3


8

((7.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00496987 × 1012 m-1 kg-1 s3


159

1

((7.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.09064352 × 1012 m-1 kg-1 s3


2

((7.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.04532176 × 1012 m-1 kg-1 s3


3

((7.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.69688117 × 1012 m-1 kg-1 s3


4

((7.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.02266088 × 1012 m-1 kg-1 s3


5

((7.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6181287 × 1012 m-1 kg-1 s3


6

((7.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34844059 × 1012 m-1 kg-1 s3


7

((7.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15580622 × 1012 m-1 kg-1 s3


8

((7.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01133044 × 1012 m-1 kg-1 s3


160

1

((7.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.14152806 × 1012 m-1 kg-1 s3


2

((7.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.07076403 × 1012 m-1 kg-1 s3


3

((7.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.71384269 × 1012 m-1 kg-1 s3


4

((7.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538201 × 1012 m-1 kg-1 s3


5

((7.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


6

((7.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35692134 × 1012 m-1 kg-1 s3


7

((7.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16307544 × 1012 m-1 kg-1 s3


8

((7.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1012 m-1 kg-1 s3


161

1

((7.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.19241262 × 1012 m-1 kg-1 s3


2

((7.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.09620631 × 1012 m-1 kg-1 s3


3

((7.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.73080421 × 1012 m-1 kg-1 s3


4

((7.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.04810315 × 1012 m-1 kg-1 s3


5

((7.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.63848252 × 1012 m-1 kg-1 s3


6

((7.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3654021 × 1012 m-1 kg-1 s3


7

((7.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


8

((7.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.02405158 × 1012 m-1 kg-1 s3


162

1

((7.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.24329716 × 1012 m-1 kg-1 s3


2

((7.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.12164858 × 1012 m-1 kg-1 s3


3

((7.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.74776572 × 1012 m-1 kg-1 s3


4

((7.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.06082429 × 1012 m-1 kg-1 s3


5

((7.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64865943 × 1012 m-1 kg-1 s3


6

((7.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


7

((7.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17761388 × 1012 m-1 kg-1 s3


8

((7.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03041214 × 1012 m-1 kg-1 s3


163

1

((7.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.29418172 × 1012 m-1 kg-1 s3


2

((7.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.14709086 × 1012 m-1 kg-1 s3


3

((7.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.76472724 × 1012 m-1 kg-1 s3


4

((7.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.07354543 × 1012 m-1 kg-1 s3


5

((7.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65883634 × 1012 m-1 kg-1 s3


6

((7.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38236362 × 1012 m-1 kg-1 s3


7

((7.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1848831 × 1012 m-1 kg-1 s3


8

((7.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.03677271 × 1012 m-1 kg-1 s3


164

1

((7.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.34506626 × 1012 m-1 kg-1 s3


2

((7.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.17253313 × 1012 m-1 kg-1 s3


3

((7.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.78168875 × 1012 m-1 kg-1 s3


4

((7.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.08626656 × 1012 m-1 kg-1 s3


5

((7.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66901325 × 1012 m-1 kg-1 s3


6

((7.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39084438 × 1012 m-1 kg-1 s3


7

((7.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19215232 × 1012 m-1 kg-1 s3


8

((7.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04313328 × 1012 m-1 kg-1 s3


165

1

((7.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.39595081 × 1012 m-1 kg-1 s3


2

((7.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.19797541 × 1012 m-1 kg-1 s3


3

((7.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.79865027 × 1012 m-1 kg-1 s3


4

((7.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0989877 × 1012 m-1 kg-1 s3


5

((7.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


6

((7.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39932514 × 1012 m-1 kg-1 s3


7

((7.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19942154 × 1012 m-1 kg-1 s3


8

((7.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.04949385 × 1012 m-1 kg-1 s3


166

1

((7.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.44683537 × 1012 m-1 kg-1 s3


2

((7.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.22341769 × 1012 m-1 kg-1 s3


3

((7.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.81561179 × 1012 m-1 kg-1 s3


4

((7.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.11170884 × 1012 m-1 kg-1 s3


5

((7.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.68936707 × 1012 m-1 kg-1 s3


6

((7.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4078059 × 1012 m-1 kg-1 s3


7

((7.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20669077 × 1012 m-1 kg-1 s3


8

((7.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.05585442 × 1012 m-1 kg-1 s3


167

1

((7.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.49771991 × 1012 m-1 kg-1 s3


2

((7.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.24885996 × 1012 m-1 kg-1 s3


3

((7.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.8325733 × 1012 m-1 kg-1 s3


4

((7.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.12442998 × 1012 m-1 kg-1 s3


5

((7.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.69954398 × 1012 m-1 kg-1 s3


6

((7.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41628665 × 1012 m-1 kg-1 s3


7

((7.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21395999 × 1012 m-1 kg-1 s3


8

((7.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06221499 × 1012 m-1 kg-1 s3


168

1

((7.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.54860447 × 1012 m-1 kg-1 s3


2

((7.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.27430224 × 1012 m-1 kg-1 s3


3

((7.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.84953482 × 1012 m-1 kg-1 s3


4

((7.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.13715112 × 1012 m-1 kg-1 s3


5

((7.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.70972089 × 1012 m-1 kg-1 s3


6

((7.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


7

((7.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


8

((7.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.06857556 × 1012 m-1 kg-1 s3


169

1

((7.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.59948901 × 1012 m-1 kg-1 s3


2

((7.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.29974451 × 1012 m-1 kg-1 s3


3

((7.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.86649634 × 1012 m-1 kg-1 s3


4

((7.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.14987225 × 1012 m-1 kg-1 s3


5

((7.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.7198978 × 1012 m-1 kg-1 s3


6

((7.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43324817 × 1012 m-1 kg-1 s3


7

((7.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22849843 × 1012 m-1 kg-1 s3


8

((7.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.07493613 × 1012 m-1 kg-1 s3


170

1

((7.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.65037357 × 1012 m-1 kg-1 s3


2

((7.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.32518678 × 1012 m-1 kg-1 s3


3

((7.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.88345786 × 1012 m-1 kg-1 s3


4

((7.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.16259339 × 1012 m-1 kg-1 s3


5

((7.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.73007471 × 1012 m-1 kg-1 s3


6

((7.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44172893 × 1012 m-1 kg-1 s3


7

((7.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23576765 × 1012 m-1 kg-1 s3


8

((7.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0812967 × 1012 m-1 kg-1 s3


171

1

((7.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.70125811 × 1012 m-1 kg-1 s3


2

((7.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.35062906 × 1012 m-1 kg-1 s3


3

((7.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.90041937 × 1012 m-1 kg-1 s3


4

((7.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.17531453 × 1012 m-1 kg-1 s3


5

((7.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.74025162 × 1012 m-1 kg-1 s3


6

((7.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45020969 × 1012 m-1 kg-1 s3


7

((7.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24303687 × 1012 m-1 kg-1 s3


8

((7.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.08765726 × 1012 m-1 kg-1 s3


172

1

((7.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.75214267 × 1012 m-1 kg-1 s3


2

((7.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.37607133 × 1012 m-1 kg-1 s3


3

((7.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.91738089 × 1012 m-1 kg-1 s3


4

((7.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.18803567 × 1012 m-1 kg-1 s3


5

((7.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.75042853 × 1012 m-1 kg-1 s3


6

((7.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.45869044 × 1012 m-1 kg-1 s3


7

((7.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2503061 × 1012 m-1 kg-1 s3


8

((7.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.09401783 × 1012 m-1 kg-1 s3


173

1

((7.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.80302721 × 1012 m-1 kg-1 s3


2

((7.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.40151361 × 1012 m-1 kg-1 s3


3

((7.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.9343424 × 1012 m-1 kg-1 s3


4

((7.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.2007568 × 1012 m-1 kg-1 s3


5

((7.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.76060544 × 1012 m-1 kg-1 s3


6

((7.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4671712 × 1012 m-1 kg-1 s3


7

((7.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25757532 × 1012 m-1 kg-1 s3


8

((7.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1003784 × 1012 m-1 kg-1 s3


174

1

((7.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.85391177 × 1012 m-1 kg-1 s3


2

((7.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.42695588 × 1012 m-1 kg-1 s3


3

((7.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.95130392 × 1012 m-1 kg-1 s3


4

((7.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.21347794 × 1012 m-1 kg-1 s3


5

((7.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.77078235 × 1012 m-1 kg-1 s3


6

((7.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.47565196 × 1012 m-1 kg-1 s3


7

((7.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26484454 × 1012 m-1 kg-1 s3


8

((7.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.10673897 × 1012 m-1 kg-1 s3


175

1

((7.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.90479631 × 1012 m-1 kg-1 s3


2

((7.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.45239816 × 1012 m-1 kg-1 s3


3

((7.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.96826544 × 1012 m-1 kg-1 s3


4

((7.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.22619908 × 1012 m-1 kg-1 s3


5

((7.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.78095926 × 1012 m-1 kg-1 s3


6

((7.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.48413272 × 1012 m-1 kg-1 s3


7

((7.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


8

((7.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11309954 × 1012 m-1 kg-1 s3


176

1

((8.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =8.95568087 × 1012 m-1 kg-1 s3


2

((8.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.47784043 × 1012 m-1 kg-1 s3


3

((8.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.98522696 × 1012 m-1 kg-1 s3


4

((8.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.23892022 × 1012 m-1 kg-1 s3


5

((8.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.79113617 × 1012 m-1 kg-1 s3


6

((8.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.49261348 × 1012 m-1 kg-1 s3


7

((8.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27938298 × 1012 m-1 kg-1 s3


8

((8.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.11946011 × 1012 m-1 kg-1 s3


177

1

((8.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.00656542 × 1012 m-1 kg-1 s3


2

((8.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.50328271 × 1012 m-1 kg-1 s3


3

((8.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.00218847 × 1012 m-1 kg-1 s3


4

((8.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.25164136 × 1012 m-1 kg-1 s3


5

((8.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.80131308 × 1012 m-1 kg-1 s3


6

((8.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50109424 × 1012 m-1 kg-1 s3


7

((8.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2866522 × 1012 m-1 kg-1 s3


8

((8.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.12582068 × 1012 m-1 kg-1 s3


178

1

((8.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.05744997 × 1012 m-1 kg-1 s3


2

((8.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.52872498 × 1012 m-1 kg-1 s3


3

((8.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.01914999 × 1012 m-1 kg-1 s3


4

((8.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.26436249 × 1012 m-1 kg-1 s3


5

((8.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.81148999 × 1012 m-1 kg-1 s3


6

((8.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.50957499 × 1012 m-1 kg-1 s3


7

((8.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.29392142 × 1012 m-1 kg-1 s3


8

((8.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13218125 × 1012 m-1 kg-1 s3


179

1

((8.13636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.10833452 × 1012 m-1 kg-1 s3


2

((8.13636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.55416726 × 1012 m-1 kg-1 s3


3

((8.13636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.03611151 × 1012 m-1 kg-1 s3


4

((8.13636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.27708363 × 1012 m-1 kg-1 s3


5

((8.13636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.8216669 × 1012 m-1 kg-1 s3


6

((8.13636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.51805575 × 1012 m-1 kg-1 s3


7

((8.13636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30119065 × 1012 m-1 kg-1 s3


8

((8.13636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.13854182 × 1012 m-1 kg-1 s3


180

1

((8.18181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.15921907 × 1012 m-1 kg-1 s3


2

((8.18181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.57960953 × 1012 m-1 kg-1 s3


3

((8.18181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.05307302 × 1012 m-1 kg-1 s3


4

((8.18181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.28980477 × 1012 m-1 kg-1 s3


5

((8.18181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.83184381 × 1012 m-1 kg-1 s3


6

((8.18181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.52653651 × 1012 m-1 kg-1 s3


7

((8.18181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.30845987 × 1012 m-1 kg-1 s3


8

((8.18181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.14490238 × 1012 m-1 kg-1 s3


181

1

((8.22727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.21010362 × 1012 m-1 kg-1 s3


2

((8.22727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.60505181 × 1012 m-1 kg-1 s3


3

((8.22727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.07003454 × 1012 m-1 kg-1 s3


4

((8.22727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.30252591 × 1012 m-1 kg-1 s3


5

((8.22727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.84202072 × 1012 m-1 kg-1 s3


6

((8.22727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.53501727 × 1012 m-1 kg-1 s3


7

((8.22727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.31572909 × 1012 m-1 kg-1 s3


8

((8.22727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15126295 × 1012 m-1 kg-1 s3


182

1

((8.27272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.26098817 × 1012 m-1 kg-1 s3


2

((8.27272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.63049408 × 1012 m-1 kg-1 s3


3

((8.27272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.08699606 × 1012 m-1 kg-1 s3


4

((8.27272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.31524704 × 1012 m-1 kg-1 s3


5

((8.27272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.85219763 × 1012 m-1 kg-1 s3


6

((8.27272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.54349803 × 1012 m-1 kg-1 s3


7

((8.27272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.32299831 × 1012 m-1 kg-1 s3


8

((8.27272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.15762352 × 1012 m-1 kg-1 s3


183

1

((8.31818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.31187272 × 1012 m-1 kg-1 s3


2

((8.31818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.65593636 × 1012 m-1 kg-1 s3


3

((8.31818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.10395757 × 1012 m-1 kg-1 s3


4

((8.31818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.32796818 × 1012 m-1 kg-1 s3


5

((8.31818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.86237454 × 1012 m-1 kg-1 s3


6

((8.31818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.55197879 × 1012 m-1 kg-1 s3


7

((8.31818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33026753 × 1012 m-1 kg-1 s3


8

((8.31818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.16398409 × 1012 m-1 kg-1 s3


184

1

((8.36363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.36275727 × 1012 m-1 kg-1 s3


2

((8.36363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.68137863 × 1012 m-1 kg-1 s3


3

((8.36363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.12091909 × 1012 m-1 kg-1 s3


4

((8.36363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.34068932 × 1012 m-1 kg-1 s3


5

((8.36363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.87255145 × 1012 m-1 kg-1 s3


6

((8.36363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.56045954 × 1012 m-1 kg-1 s3


7

((8.36363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.33753675 × 1012 m-1 kg-1 s3


8

((8.36363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17034466 × 1012 m-1 kg-1 s3


185

1

((8.40909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.41364182 × 1012 m-1 kg-1 s3


2

((8.40909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.70682091 × 1012 m-1 kg-1 s3


3

((8.40909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.13788061 × 1012 m-1 kg-1 s3


4

((8.40909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.35341046 × 1012 m-1 kg-1 s3


5

((8.40909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.88272836 × 1012 m-1 kg-1 s3


6

((8.40909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.5689403 × 1012 m-1 kg-1 s3


7

((8.40909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.34480597 × 1012 m-1 kg-1 s3


8

((8.40909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.17670523 × 1012 m-1 kg-1 s3


186

1

((8.45454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.46452637 × 1012 m-1 kg-1 s3


2

((8.45454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.73226318 × 1012 m-1 kg-1 s3


3

((8.45454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.15484212 × 1012 m-1 kg-1 s3


4

((8.45454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.36613159 × 1012 m-1 kg-1 s3


5

((8.45454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.89290527 × 1012 m-1 kg-1 s3


6

((8.45454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.57742106 × 1012 m-1 kg-1 s3


7

((8.45454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3520752 × 1012 m-1 kg-1 s3


8

((8.45454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.1830658 × 1012 m-1 kg-1 s3


187

1

((8.5 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.51541092 × 1012 m-1 kg-1 s3


2

((8.5 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.75770546 × 1012 m-1 kg-1 s3


3

((8.5 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.17180364 × 1012 m-1 kg-1 s3


4

((8.5 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.37885273 × 1012 m-1 kg-1 s3


5

((8.5 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.90308218 × 1012 m-1 kg-1 s3


6

((8.5 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.58590182 × 1012 m-1 kg-1 s3


7

((8.5 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.35934442 × 1012 m-1 kg-1 s3


8

((8.5 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.18942637 × 1012 m-1 kg-1 s3


188

1

((8.54545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.56629548 × 1012 m-1 kg-1 s3


2

((8.54545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.78314774 × 1012 m-1 kg-1 s3


3

((8.54545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.18876516 × 1012 m-1 kg-1 s3


4

((8.54545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.39157387 × 1012 m-1 kg-1 s3


5

((8.54545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.9132591 × 1012 m-1 kg-1 s3


6

((8.54545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.59438258 × 1012 m-1 kg-1 s3


7

((8.54545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.36661364 × 1012 m-1 kg-1 s3


8

((8.54545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.19578693 × 1012 m-1 kg-1 s3


189

1

((8.59090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.61718002 × 1012 m-1 kg-1 s3


2

((8.59090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.80859001 × 1012 m-1 kg-1 s3


3

((8.59090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.20572667 × 1012 m-1 kg-1 s3


4

((8.59090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.40429501 × 1012 m-1 kg-1 s3


5

((8.59090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.923436 × 1012 m-1 kg-1 s3


6

((8.59090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.60286334 × 1012 m-1 kg-1 s3


7

((8.59090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.37388286 × 1012 m-1 kg-1 s3


8

((8.59090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.2021475 × 1012 m-1 kg-1 s3


190

1

((8.63636364 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.66806458 × 1012 m-1 kg-1 s3


2

((8.63636364 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.83403229 × 1012 m-1 kg-1 s3


3

((8.63636364 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.22268819 × 1012 m-1 kg-1 s3


4

((8.63636364 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.41701614 × 1012 m-1 kg-1 s3


5

((8.63636364 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.93361292 × 1012 m-1 kg-1 s3


6

((8.63636364 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6113441 × 1012 m-1 kg-1 s3


7

((8.63636364 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.38115208 × 1012 m-1 kg-1 s3


8

((8.63636364 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.20850807 × 1012 m-1 kg-1 s3


191

1

((8.68181818 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.71894912 × 1012 m-1 kg-1 s3


2

((8.68181818 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.85947456 × 1012 m-1 kg-1 s3


3

((8.68181818 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.23964971 × 1012 m-1 kg-1 s3


4

((8.68181818 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.42973728 × 1012 m-1 kg-1 s3


5

((8.68181818 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.94378982 × 1012 m-1 kg-1 s3


6

((8.68181818 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.61982485 × 1012 m-1 kg-1 s3


7

((8.68181818 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.3884213 × 1012 m-1 kg-1 s3


8

((8.68181818 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.21486864 × 1012 m-1 kg-1 s3


192

1

((8.72727273 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.76983368 × 1012 m-1 kg-1 s3


2

((8.72727273 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.88491684 × 1012 m-1 kg-1 s3


3

((8.72727273 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.25661123 × 1012 m-1 kg-1 s3


4

((8.72727273 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.44245842 × 1012 m-1 kg-1 s3


5

((8.72727273 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.95396674 × 1012 m-1 kg-1 s3


6

((8.72727273 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.62830561 × 1012 m-1 kg-1 s3


7

((8.72727273 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.39569053 × 1012 m-1 kg-1 s3


8

((8.72727273 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22122921 × 1012 m-1 kg-1 s3


193

1

((8.77272727 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.82071822 × 1012 m-1 kg-1 s3


2

((8.77272727 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.91035911 × 1012 m-1 kg-1 s3


3

((8.77272727 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.27357274 × 1012 m-1 kg-1 s3


4

((8.77272727 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.45517956 × 1012 m-1 kg-1 s3


5

((8.77272727 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.96414364 × 1012 m-1 kg-1 s3


6

((8.77272727 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.63678637 × 1012 m-1 kg-1 s3


7

((8.77272727 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.40295975 × 1012 m-1 kg-1 s3


8

((8.77272727 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.22758978 × 1012 m-1 kg-1 s3


194

1

((8.81818182 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.87160278 × 1012 m-1 kg-1 s3


2

((8.81818182 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.93580139 × 1012 m-1 kg-1 s3


3

((8.81818182 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.29053426 × 1012 m-1 kg-1 s3


4

((8.81818182 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.46790069 × 1012 m-1 kg-1 s3


5

((8.81818182 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.97432056 × 1012 m-1 kg-1 s3


6

((8.81818182 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.64526713 × 1012 m-1 kg-1 s3


7

((8.81818182 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41022897 × 1012 m-1 kg-1 s3


8

((8.81818182 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.23395035 × 1012 m-1 kg-1 s3


195

1

((8.86363636 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.92248732 × 1012 m-1 kg-1 s3


2

((8.86363636 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.96124366 × 1012 m-1 kg-1 s3


3

((8.86363636 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.30749577 × 1012 m-1 kg-1 s3


4

((8.86363636 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.48062183 × 1012 m-1 kg-1 s3


5

((8.86363636 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.98449746 × 1012 m-1 kg-1 s3


6

((8.86363636 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.65374789 × 1012 m-1 kg-1 s3


7

((8.86363636 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.41749819 × 1012 m-1 kg-1 s3


8

((8.86363636 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24031092 × 1012 m-1 kg-1 s3


196

1

((8.90909091 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =9.97337188 × 1012 m-1 kg-1 s3


2

((8.90909091 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =4.98668594 × 1012 m-1 kg-1 s3


3

((8.90909091 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.32445729 × 1012 m-1 kg-1 s3


4

((8.90909091 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.49334297 × 1012 m-1 kg-1 s3


5

((8.90909091 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.99467438 × 1012 m-1 kg-1 s3


6

((8.90909091 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.66222865 × 1012 m-1 kg-1 s3


7

((8.90909091 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.42476741 × 1012 m-1 kg-1 s3


8

((8.90909091 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.24667148 × 1012 m-1 kg-1 s3


197

1

((8.95454545 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.00242564 × 1013 m-1 kg-1 s3


2

((8.95454545 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.01212821 × 1012 m-1 kg-1 s3


3

((8.95454545 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.34141881 × 1012 m-1 kg-1 s3


4

((8.95454545 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.50606411 × 1012 m-1 kg-1 s3


5

((8.95454545 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.00485128 × 1012 m-1 kg-1 s3


6

((8.95454545 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.6707094 × 1012 m-1 kg-1 s3


7

((8.95454545 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43203663 × 1012 m-1 kg-1 s3


8

((8.95454545 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25303205 × 1012 m-1 kg-1 s3


198

1

((9.0 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.0075141 × 1013 m-1 kg-1 s3


2

((9.0 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.03757049 × 1012 m-1 kg-1 s3


3

((9.0 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.35838033 × 1012 m-1 kg-1 s3


4

((9.0 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.51878524 × 1012 m-1 kg-1 s3


5

((9.0 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.0150282 × 1012 m-1 kg-1 s3


6

((9.0 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.67919016 × 1012 m-1 kg-1 s3


7

((9.0 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.43930585 × 1012 m-1 kg-1 s3


8

((9.0 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.25939262 × 1012 m-1 kg-1 s3


199

1

((9.04545455 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01260255 × 1013 m-1 kg-1 s3


2

((9.04545455 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.06301277 × 1012 m-1 kg-1 s3


3

((9.04545455 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.37534184 × 1012 m-1 kg-1 s3


4

((9.04545455 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.53150638 × 1012 m-1 kg-1 s3


5

((9.04545455 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.02520511 × 1012 m-1 kg-1 s3


6

((9.04545455 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.68767092 × 1012 m-1 kg-1 s3


7

((9.04545455 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.44657508 × 1012 m-1 kg-1 s3


8

((9.04545455 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.26575319 × 1012 m-1 kg-1 s3


200

1

((9.09090909 * ((10^(-17)) * seconds)) / (1 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.01769101 × 1013 m-1 kg-1 s3


2

((9.09090909 * ((10^(-17)) * seconds)) / (2 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =5.08845504 × 1012 m-1 kg-1 s3


3

((9.09090909 * ((10^(-17)) * seconds)) / (3 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =3.39230336 × 1012 m-1 kg-1 s3


4

((9.09090909 * ((10^(-17)) * seconds)) / (4 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.54422752 × 1012 m-1 kg-1 s3


5

((9.09090909 * ((10^(-17)) * seconds)) / (5 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =2.03538202 × 1012 m-1 kg-1 s3


6

((9.09090909 * ((10^(-17)) * seconds)) / (6 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.69615168 × 1012 m-1 kg-1 s3


7

((9.09090909 * ((10^(-17)) * seconds)) / (7 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.4538443 × 1012 m-1 kg-1 s3


8

((9.09090909 * ((10^(-17)) * seconds)) / (8 x 9.10900 x ((10^(-31)) * kg))) / (9.80665 * (m / (s^2))) =1.27211376 × 1012 m-1 kg-1 s3


Marlin – Dev-Blog – Episode 00004 – 64800-5/12. Finishing the first page of storyboards on the new XP-PEN Artist 24 Pro.

Have to admit all that space is absolutely a killer, and once you get used to the buttons you’re off to the races in terms of efficiency. Loving it so far. If my internet connection didn’t take hours to upload videos I would condense longer pieces and put them up, but I think hour long chunklets sped up to roughly ten minutes is about the place to be for the foreseeable future.

I’m hoping she likes it as a surprise, as the book is only getting finished so she has this animation. I know she wanted a game, but it’s too far above my head, where my strengths lie in drawing, and if I have to do that thousands of times so be it.

Music by Jesse Gallager – Angel Guidance. Digging the Cello playing.

Oh here’s a couple of character sketches from the story and last nights post which I forgot to upload here:

Marlins Parents.
Joshua, a protagonist in the story and his trusty plank. Check out the channel for his drawing process.
The creation of Joshua. Or Tum, whichever you prefer.

Much pleasure,

-J.

Self Assembling nanites part one.

Top down: grind down a material into its wanted shape but creates waste. 

Bottom up: build slowly the intricate parts. 

A solid method is to create the nanites in a combined fashion. 

You’re building cubli’s. 

Use: pyrolysis carbon casing to be safe incase of failure inside the body and allow available attachments to drugs or operating tools. Cancerous bone is weak. (I believe so you may not need carbide tips to get through if going slowly enough). Sewing systems can join molecularly within the body at attachment points similar to spider web sacks joining together in series and rotated out with a twist to the nearest neighbor to continue the feed until the suture is done. 

Top down to manufacture housing and empty inside shell. A series of holes is drilled at each cross corner so as to not be totally flat, where you’ll later bond conductive material to electro magnetize those sides and corners using dip pen lithography.  

Waste is removed continuously and recycled into pure material once atomic slag is removed if any. 

Bottom-up using recycled innards plus additional materials to build control mechanics. 

Molecular beam epitaxy to lay films of atoms inside the inner workings in specific orders or “shells” until all moving and inert parts are manufactured and in place as warranted. Will have to ask the creators or a computer optimization algorithm to find the best method. Battery cells will have to be dropped into place and connected with dip pen lithography again. 

Build the system on a roll to roll “conveyer system” and you end up with the finished product at the end. 

Test outside body on cancerous white blood cells with users artificial cytokines and antibodies. Or coronaviruses.  Force them to encircle the viruses as artificial kill cells and use the batteries to heat the systems conductive materials with partial RBCs cellular make up on the drug attachment points that the corona wants to bond to and then heat to the viruses destruction point and the virus is eradicated from within with simple nanites. Remove dirty nanites from system. Clean. Repeat. 

Vector Analysis of a moving object to make it appear smaller than it is, even when stationary.

I’m using boats as a reference here because this is what I dreamt of about ten minutes ago–playing with my brother. Some type of military boat game.

Every country has radar of some type, and all you need to do it make your self slip through it is to move within the interference zones of each type at the vector intervals ranges between their minimum and maximum based on gravity and motion of travel to not be seen as well. They already design boats to have a lower footprint. I’m sure that goes for every unit type of the old war style.

So how do you disrupt your whole entire ship/planes/cars units footprint? By making it resonate continuously with a dedicated device at its appropriate place(s).

Let me show you a few badly drawn diagrams to show you what I mean:

The problem is now that we’ve got satellites pumping them down as well. So you’ve got to make 3-d adaptive versions of this. They don’t look dissimilar to:

So to solve that issue you have an inner ring and an outer ring of these creating these sin (I keep seeing sin but it could be another function. It’s just the simplest version to get the point across that I could think of) functions in 3d in all directions cycling against what is found by your own technology and it should vastly shrink your units footprint. The outer casing may look similar to a geometric golf ball. But it may be possible to utilize these functions without much of a casing at all.

Just an idea.
Have a good day/night.
-J.

Mole City Day 1; Update 1.5

I’ll be making the first video message tomorrow for the YouTube channel, animating the sprites with a Voiceover I think but I did create the channel called Mole City, and try my first hand at sprite backgrounds. It’s basic but it’ll do, but it should also let me add in characters as they come to me.

Here’s what you’ll see:

Search for Mole City to find it. Link below.
As you can see the characters are below the sign when shown on a larger screen.

https://www.youtube.com/channel/UCJk86Y_73msLLdF2wueJRig

Hope you’re having a wonderful day/night.
-J.

A basic neural net from last night to fight SARS-COvid-02.

I’m unsure whether the main nodes extraneous markers need to be interconnected just for potential analyzation. The darker blue on the right side is the additional effects to be measured per layer one spoke. One spoke is location to next date marker so must continue in it’s own path on the left through the system. Connecting to location in layer three.
Layer two goes in both directions as the disease travel forms can change over time and on a whim.
Layer three is the splintering and conditional symptomatic change effect nodes.
The last node (blue) feeds into the next data set.


Tackling the SARS-COvid-02 pandemic using Machine Learning (ML).



There are at least 9 types of machine learning to currently use within those domains there are many ways to go about this but let’s use a neural net.

Suppose each hospital is a node. With a given value for the end of the day given an entire worldly end point. No time zones. Just a point in time that all converge which all countries doctors agree on. It can be automated at their end or start of their day to go out to the main computing branch so that all the information is included. The nodes are counted. If a node is missing or late they are given a hit and show lack of care or need for shaming or help for overwork and are given a momentary worker to set them up. Or whatever gets the whip cracked to most people.

That’s the outer layer of our nodes.

The second layer is if the number of cases increased per duration, decreased (deaths due to, not withstanding) or remained the same, again deaths not withstanding.

They are weighted. So that if they are increasing in a trend of travel around the globe we can match it to things such as a third layer such as wind or water flow, boat travel, flight travel, or what ever else is still available to commute the disease. 

The next node level is defensive: We now know the shape of the beast and direction so we can heed the warning of an incoming influx of illness from those, any, or all, regions with relative ease and can preemptively prepare those to be afflicted, as it makes it rounds.

It will continue, splintering and reinforcing itself against us while we are unable to stop it completely. I saw the data from China’s first report (no blame) to the April 27, 2020 build and the RNA is a different amount entirely, at 19 strands of the same elongation before being whole down from the initial 20+;  it is becoming more efficient. 

For that build I did my best to find the end Codons that would terminate the elongation naturally, and from there found a dual MM that matched the end Codons to 19 elongations—perhaps a coincidence, though I know that only one M is needed to start a build, two is not unheard of.

Anyway back to the Machine Learning:

Each iteration of splintering would be on the next level of nodes. Weighted by intensity of death, reproduction of disease after recovery, location, time. Each splinter would also have an additional sub node system attached to it that lists the change in symptoms so that you could map and join those together on the next layer.

This layer is simply the next day.
The cycle repeats.

There will at first be dead spots but if using proper technology we can find out any and all iterations and any and all continuations of the disease for any location without the public going into an uproar about their rights, though they give them up to have a computer do the work for them.

It would be a semi-supervised system at first; the data would be hand fed by some nurse/hr person who can feel like they’re doing something extra if they want, or just part of the job if they don’t. They should be lauded though, for going the extra mile. 

There are backdoors into every system on the planet why the hell wouldn’t you use them to diffuse the situation collectively. You already have every citizen tracked. They’re only just realizing it now.


So now let’s look at a practical build: 

Layer One: 164,500 (as of 2015) hospital nodes.
Sub-Layer One Spokes: Weighted for: current location (mobile, or not,) patients seeable per day, incidences increasing, decreasing or stagnating, deaths rising, decreasing, stagnating, Deaths in totality, their report time relative to universal time marker, care lacking, workforce drained or overrun or underwhelmed—then take total order of workers and shuffle them to new location.

As a precaution create a universal language booklet of how to manage current systems. Already done I believe. Or should have been done so workers can be interchangeable within a day or so’s flight.

Sub Layer One Spokes: They are weighted. So that if they are increasing in a trend of physical travel around the globe we can match it to things such as a second layer spoke: such as wind or water flow, boat travel, flight travel, food borne illness, food processing, or what ever else is still available to commute the disease.

Layer Two: Defensive: We now know the shape of the beast and direction so we can heed the warning of an incoming influx of illness from those, any, or all, regions from doctors not politicians as they have proven themselves inept (not all) with relative ease and can preemptively prepare those to be afflicted, as it makes it rounds.

It will continue, splintering and reinforcing itself against us while we are unable to stop it completely. I saw the data from China’s first report (no blame) to the April 27, 2020 build and the RNA is a different amount entirely, at 19 strands of the same elongation before being whole down from the initial 20+;  it is becoming more efficient. 

For that build I did my best to find the end Codons that would terminate the elongation naturally, and from there found a dual MM that matched the end Codons to 19 elongations—perhaps a coincidence, as I know that only one M is needed to start a build, two is not unheard of. Included below:
Probably nothing.

sars-covid-02-basic-genetic-information-i-found-today.


Anyway back to the Machine Learning:

Layer Three: Splintering: Each iteration of splintering would be on the next level of nodes. Weighted by intensity of death, reproduction of disease after recovery, location, time. Each splinter would also have an additional sub node system attached to it that lists the change in symptoms so that you could map and join those together on the next layer and previous layers of location to map their movements and trends as well.

This layer is simply the signal to repeat.
The cycle repeats.

Artificial Atoms: As they relate to Quibits.

So far they’re using a single electron artificial atoms in quantum wells to become quibits. 

From what I’ve found in my lazy search they seem to think that quitrits and quadtrits are the maximum number of artificial trits that can be made since 2013—but that is incomplete.

The standard deviation of an atom is a nucleus wrapped around with electrons who travel in patterns around the nucleus in a wave/formed pattern. 


Thought experiment to get to the next point:

If you let a single atom float in a vacuum full of super fluid (assuming no possible bonds able) denying gravity’s hold on the density and mass of the atom, and the superfluid pushing against all parts of the atom at once dependent on the superfluids movement. Other than if we’re lucky enough to have stabilized superfluid after some time—inherent vibration withstanding. Would we be able to find the sole atoms exact electron travel within the confines. If so could we then release that atom in this fluid so that is it constantly “falling or rising” dependent on the superfluids movement around it. Depends on the containers shape. A single tube gives up. A s bend on it’s end middle gives down if from the proper side.  

So that we can then “open” an area where the electrons are centralized within a halo around the “top” or “bottom” of the sole atom. That would open up many stages to insert wavelengths  from within the containers walls or outside it if properly managed other than radio at once and change the planes that would be interacted to be actable more than singularly at once, so that you could actually hit one electron, infer it’s superimposed cousin from glimmering from the initial hit not the same as the other electrons and then the general direction of the superposition atoms direction outside the container. This may have to be done in a completely dark room. Dual vacuumed enclosure/dual superfluid to allow clarity. And if so would it be possible to set this example up twice, in either the same state or two opposing states so that you get that glimmer and can start to literally determine superpositions distance/locations.

At the same time we could do a different function where we hit multiple electrons at once causing them to pulse in ways we want—up, down, side to side, diagonal and since the electrons of the sole atoms are compressed between the superfluids electrons, if we time them, we could bounce from one atom to the other and back again, bending the super position—though technically not that—a new form of some kind (atomic J Hook?), around the same atom either the other side of the same electron or a cousin electron within the halo. From there we take all possible iterations of those atoms and wavelength iterations and we can build a table/dataset of superposition distances or at the least their angles. Knowing that by raising the superfluid temperature using light would possibly change it’s state we would have to start small with the lowest coolest lights possible. Or diffusion through a material to slow it down to it’s coolest speed though through a final lens to hit it’s target. Read speed isn’t important at first, it’s just the fact that we can figure out the change states in real time. 

Hot Quibits:


There is such a thing as multi layered super positioning when using light’s wavelengths at the medium of super positioning.

You can cut the points of contact around the nucleus so that they create multi cast shadows where they are cross referenced. You can still read the bits themselves, but also the references as other operations. Or at least as another set of information, be it topographical or depth-wise. 

Eventually you’ll be getting “hot” chipsets that can handle the cooler frequencies in tandem when pulsed with slightly higher frequencies, and when they mix you’ll get another set. Interspersing them between the atoms means you’ll get an array of data from one series of quantum pulses, but they can be interconnected in such a way as to be read from any side as warranted as long as you want to read those cross references. You can then focus those wave lengths into something else using prisms or whatever is new nowadays in lens technologies.

You can also build materials to absorb the cross references and hold them as heat.

There is a possibility to create cool and hot well combination boards that let you do both functionalities at once in one pass and as they become warmer and the cool becomes raised you flip the tech and cool the hot quibits to be cool and then you have a on/off action as well as a cool warm cycle needed to disperse heating massive racks of of quantum chipsets built in. Such as they do now with quantum dots. Though I know those range in size instead, these would range in temperature or frequency reception until they hit a critical array and then an interpreter function would change it to the opposite or reproduce the cooling function in the same spot in waves so you don’t lose information and can “Store” it as you would—so quantum Dram. But light is the way to go here.

To create Quantum Sram You would need to spin the materials down to a certain cool point then keep them at a temperature considered stable and that would keep the spin if not adjusted static creating a range of Sram. Perhaps you would need a certain atom type that spins slowly against a certain lights frequency constantly, wobbles very little to not at all.

You know what if you capture the atom with a carbon shell as I described this morning and then pulsed it within the solution so that it span slowly as it was at it’s coolest and it was in a vacuum so that it couldn’t run up the side of the wall, and only allowed entry of the lights through  the carbide rings insulating the tetrahedral diamonds through focussing lenses you could get very “slow” read speeds, meaning they would have time to spin down to “static” and then you could repeat and that would also be your storage read speed.